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Foreword

Astronomy and biomedical sciences find common roots in their
need to process acquired data into interpretable signals or
images. In these applications of signal processing the complexity
of data to be acquired and processed is constantly increasing,
thus challenging signal processing theories. Data come in larger
volumes every day, can be multi-modal, multi-spectral, scalar
or tensor-valued, living in high dimensional geometries, and are
possibly non-Euclidean.

The international Biomedical and Astronomical Signal Pro-
cessing (BASP) Frontiers workshop was created to promote
synergies between selected topics in astronomy and biomedical
sciences, around common challenges for signal processing.

Building on the success of the first three workshops in 2011, 2013,
and 2015, the BASP Frontiers 2017 workshop will open its floor
to many interesting hot topics in theoretical, astrophysical, and
biomedical signal processing, with a particular focus on imaging.

Following our tradition, BASP Frontiers 2017 takes place in
a very nice resort in the Swiss Alps named Villars-sur-Ollon,
close to Lausanne and Lake Geneva. All participants will be
accommodated in 4 star hotel in a full board regime. We believe
that the most fruitful discussions often take place after the
sessions themselves, on the terrace, or during breakfast, lunch, or
dinner. We hope that the winter atmosphere will further promote
discussion and creativity.

On Behalf of BASP Frontiers organising committee

Prof. Y. Wiaux

Workshop Chair
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A distributed algorithm for wide-band radio-interferometry
Abdullah Abdulaziz, Alexandru Onose, Arwa Dabbech and Yves Wiaux

Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract—We propose a scalable, randomised algorithm
to solve the inverse imaging problem in wide-band radio-
interferometry. In the big-data context of the next-
generation radio-telescopes, the scalability is paramount due
to the large-scale of the problem to be solved. The proposed
method distributes the data measured at each frequency
and processes it in parallel. We showcase the algorithm
capabilities through realistic simulations.

I. Introduction
In wide-band radio-interferometry (RI), the electromagnetic

signal coming from the sky is probed by an array of antennas, at
multiple frequencies νi, and is correlated at each antenna pair,
producing radio measurements yi ∈ CM for each band νi. To
recover a hyper-spectral image of the sky, an ill-posed problem
has to be solved, which under simplifying assumptions, can be
modelled as Y = Φ(X) + N, where Y = (y1, . . . ,yb) ∈ CM×b
denotes the wide-band measured data at b bands, corrupted
by additive white Gaussian noise N = (n1, . . . ,nb) ∈ CM×b
and X = (x1, . . . ,xb) ∈ RN×b+ is the unknown hyper-spectral
image. The linear operator Φ(X) =

(
[Φixi]i=1:b

)
models the

acquisition process, that is an incomplete Fourier sampling.
II. Convex minimisation problem

We assume a linear mixture model for the image cube and
solve a convex minimisation problem imposing low-rankness,
join-sparsity and positivity of the image cube X [1]. We in-
troduce multiple data fidelity terms defined for each frequency
band, to achieve a high degree of parallelism. The minimisation
problem can be defined as

min
X

f(X) + µg1(Ψ†X) + g2(X) +
b∑

i=1

hi
(
Φi(X)

)
, (1)

with the functions involved: f = ιD,D = RN×b+ account-
ing for the positivity constraint; g1(Z) = ‖Z‖`2,1 imposing
joint-sparsity in a concatenation of wavelet basis Ψ; g2(Z) =
‖Z‖∗ imposing low-rankness onto the desired solution; hi =
ιBi ,Bi = {Z ∈ CM×b : ‖Z − Yi‖F ≤ εi} enforcing data
fidelity by constraining the solution to belong to the εi-balls
defined by the known noise statistics. We denote with Yi =
(α1y1, . . . , αbyb) ∈ CM×b the measurement matrix active only
at the band νi such that αj = 0, ∀j 6= i. The associated linear
operator is Φi(X) = ([αjΦixi]i=1:b) with αj = 0, ∀j 6= i.
To solve (1), we use a randomised primal-dual algorithm

[2] that relies on forward-backward (FB) iterations to manage
the non-smooth functions. The algorithmic structure has been
employed for distributed, single-band imaging [3] and for non-
distributed wide-band imaging [1]. The operations are detailed
in Algorithm 1. All the proximal FB steps have closed-form
solutions. The proximity operator for the joint-sparsity prior
is a row-wise soft-thresholding operation, for row k defined as
(S`2,1

α (Z))k,: = z̄(‖z̄‖`2−α)
‖z̄‖`2

if ‖z̄‖`2 > α and (S`2,1
α (Z))k,: = 0

otherwise. The nuclear norm produces the soft-thresholding of
the eigenvalues of Z, S∗α(Z) = H1 S`1

α

(
Σ
)
H†2. Data fidelity is

enforced by the projections PBi onto the εi sized `2 balls, for

each band and positivity is imposed via the projection PD onto
the positive orthant D.
Algorithm 1 Randomised PD for distributed WB RI.

given X(0), X̃(0)
,V(0)

1 ,V(0)
2 ,U(0)

1 , . . . ,U(0)
b
, µ, τ, σ1, σ2, σ3

repeat for t = 1, . . .
generate active set A ⊂ {1, . . . , b}
do in parallel

V(t)
1 =V

(t−1)
1 + Ψ†X̃(t−1)− S`2,1

µ/σ1

(
V(t−1)

1 + Ψ†X̃(t−1)
)

V(t)
2 =V(t−1)

2 + X̃(t−1) − S∗1/σ2

(
V(t−1)

2 + X̃(t−1)
)

∀i ∈ A do in parallel
U(t)
i

=U(t−1)
i

+ Φi

(
X̃(t−1)

)
−PBi

(
U(t−1)
i

+ Φi

(
X̃(t−1)

))
end

end
X(t) =PD

(
X(t−1)− τ

(
σ1ΨV(t)

1 + σ2V(t)
2 + σ3

b∑

i=1

Φ†i
(
U(t)
i

)))

X̃(t) =2X(t) −X(t−1)

until convergence

III. Simulations and results
We simulate a wide-band image cube following the spectral

curvature model xi = x0 (νi/ν0)−γγγ+βββ log(νi/ν0), where x0 is a
256 × 256 sized image of a radio region in the M31 galaxy;
γγγ and βββ are the spectral index maps of size N and modelled
as correlated Gaussian random fields. The wide-band cube is
generated for b = 16 bands in the range [1.4, 2.8] GHz. The
wide-band data are simulated using realistic uv-coverages from
the VLA array-configuration with M = 33120 measurements
at each band and are corrupted with zero-mean Gaussian
noise with an input signal-to-noise ratio (SNR) of 30 dB.

The figure reveals the
SNR evolution for the dif-
ferent algorithms. We can
see that the non-distributed
primal-dual algorithm de-
noted by PD [1] and the dis-
tributed version PD-D exhibit comparable behaviour, reaching
a SNR = 26 dB. For the proposed distributed randomised
algorithm PD-DR, we fix the probability of selecting an active
subset A from the full data Y to 0.5. This has the advantage of
lower infrastructure and memory requirements, at the expense
of an increased number of iterations to achieve convergence.
Also, when compared to the approach proposed in [4] and
denoted by WDCT, our proposed algorithm presents superior
performance; PD-DR reaches a SNR = 25 dB that is 5 dB
higher than WDCT.
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CMB delensing for detecting primordial B-mode fluctuations
Ethan Anderes∗,∗ Department of Statistics, University of California, Davis, California 95616.

Abstract—One of the major targets for next-generation cosmic mi-
crowave background (CMB) experiments is the detection of the primor-
dial B-mode signal. Planning is under way for Stage-IV experiments that
are projected to have instrumental noise small enough to make lensing
and foregrounds the dominant source of uncertainty for estimating the
tensor-to-scalar ratio r from polarization maps. This makes delensing a
crucial part of future CMB polarization science. In this talk we present
two likelihood methods for estimating the tensor-to-scalar ratio r from
CMB polarization observations. These two methods combine the benefits
of a full scale likelihood approach with the tractability of the quadratic
delensing technique. The tractability of both methods relies on a crucial
factorization of the pixel space covariance matrix of the polarization
observations which allows one to compute the full likelihood profile, as
a function of r, at the same computational cost of a single likelihood
evaluation.

I. INTRODUCTION

Inflation paradigm has successfully explained the origin of primor-
dial density perturbations that grew into the Cosmic Microwave Back-
ground (CMB) anisotropies and large scale structure we observed
Another key prediction of inflation is the background of primordial
gravitational waves or tensor-mode perturbations which imprints a
unique polarization pattern, we call primordial B-mode, on the CMB
anisotropies. The strength of primordial gravitational waves or tensor-
mode power is commonly quantified by the tensor-to-scalar ratio r.

The primordial B modes are contaminated by several sources:
notably the foreground emission from polarized galactic dust and the
B-mode polarization generated from gravitational lensing of CMB.
The lensed B-mode power is nearly a constant at small multipoles
(` . 1000) and therefore manifests as an effective white noise with
amplitude ∼ 5µK-arcmin. For CMB-S4, we expect to decrease the
instrumental noise to ∼ 1µK-arcmin. In this regime, the lensing B
noise (and foregrounds) would become a dominant noise source and
limit the primordial B-mode survey. Fortunately, the lensing B noise
is well understood. Up to linear order, one can effectively delense
observed B-modes by utilizing a quadratic combination of observed
E-modes and an estimate of the lensing potential. However, in the
regime of small instrumental noise and lensing uncertainty, higher
order lensing terms, ignored by the quadratic delensing technique, can
have an appreciable effect. These higher order terms not only induce
quadratic delensing bias but also contain information on primordial
B-modes. Moreover, experimental complexities such as nonstationary
noise and sky cuts become non-trivial for spectral based methods such
as the quadratic delenser. As an alternative, a full scale likelihood
analysis of the tensor-to-scalar ratio r can, in principle, optimally ac-
count for all the information in the CMB observations. Unfortunately,
a full likelihood analysis requires computation resources beyond what
is available in the near future. In this talk, we present two likelihood
based methods which are modified from the full scale likelihood one,
so as to be computationally tractable.

In this talk we will present two likelihood methods for estimating
the tensor-to-scalar ratio r from CMB polarization observations.
These two methods combine the benefits of a full scale likelihood
approach with the tractability of the quadratic delensing technique.
The first method is a pixel space, all order likelihood analysis of
the low frequency (high signal-to-noise) quadratic delensed B-modes.

This technique essentially builds upon the quadratic delenser by
taking into account all order lensing and pixel space anomalies. The
second method probes high frequency primordial B-mode fluctuations
via a pixel space local likelihood approximation. The tractability of
both methods relies on a crucial factorization of the pixel space
covariance matrix of the polarization observations which allows one
to compute the full likelihood profile, as a function of r, at the same
computational cost of a single likelihood evaluation.

7



Data Processing Challenges in the SKA era
Rosie Bolton∗

∗ Battcock Centre for Experimental Astrophysics, University of Cambridge, CB3 0HE, UK

Abstract—The first phase of the Square Kilometre Array telescopes
are due for completion in 2023. I will describe the data processing and
analysis challenges that SKA presents, and the opportunities, challenges
and limitations that are likely to come with the data in the first decade
of operations.

I. INTRODUCTION

When SKA operations begin in 2023 a new era of Radio Astron-
omy will commence. The mode of interacting with SKA data will be
driven by the necessity to reduce the data (in the original sense of
the word) in order to be able to store it for timescales longer than a
few weeks, and to get it out of the remote SKA sites and into centres
where astronomers can access and analyse the data products.

II. SKA DATA PROCESSING IN CONTEXT

The SKA observatory, in its first decade from 2023-2033 will
comprise two telescopes working independently, one in Australia
(SKA1LOW) and one in South Africa (SKA1MID). SKA1LOW will
comprise around 500 groups (stations) of log- periodic antennas
distributed in a centrally condensed arrangement across the Western
Australian desert, on distances up to 40km from the centre, and it
will be sensitive to radiation between 50 and 350MHz frequency.
SKA1MID will comprise close to 200 parabolic dishes (subsuming
the 64 13.5m MeerKAT antennas and adding a further 130 (or so)
new 15m antennas. The frequency range for SKA1MID will be
from 300MHz to 13 GHz. Both arrays of antennas are capable of
functioning in a variety of different modes including: interferometric
imaging mode; time- domain search mode (where a subset of anten-
nas is phased up to produce tied-array-beams to identify time variable
phenomena); VLBI mode and the ability to capture raw antenna
voltage data to save in a rolling buffer in case of a time variable source
detection resulting in a trigger to save these raw data. The SKA data
processing will occur within the boundaries of the SKA observatory,
in O(200-400) PFLOPS scale HPC centres (called Science Data
Processors, SDP) located in Perth and Cape Town. These SDP centres
will not support interactive data processing driven by PI astronomers,
but instead will deliver a pre-agreed set of data products. The required
processing pipelines and their parameters are used to predict SDP
processing load and thereby contribute to schedule planning for the
whole telescope (i.e. the SDP processing is a resource to be scheduled
in just the same way as time-on-source is). I will describe some of the
low latency functional requirements for SKA and the pipelines that
will be run on the complete datasets. Data products from the SDP
pipelines are passed into the archives for each telescope and then the
original data are deleted. This flushing out of the SDP into these long-
term preservation systems means that each Scheduling Block of SKA
data (typically between a few minutes to several hours on sky) will
be processed in the SDP independently. User interaction with the data
products will then be via SKA Regional Centres. This is significant:
SKA science for projects requiring long integration times (up to 1000
hours) will be extracted from final aggregate data products generated
from a hundred or so 6 hour scheduling blocks separately; yet the
noise floor in the individual products will be an order of magnitude

higher than the final target noise level. How will this be achieved?; is
it even feasible? I will discuss the challenges for designing the SKA
Regional Centers and the AENEAS H2020 project and then go on
to describe the possibilities for Exa-Byte scale astronomy and what
I believe will become the normal ways for astronomers to work in
the future.
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Abstract— Astronomy has entered an era of massive data 
streams covering thousands of square degrees of the sky and 
many decades of the electromagnetic spectrum. With catalogs 
comprising hundreds of millions of stars and galaxies measured at 
thousands of separate time-steps and each with hundreds to 
thousands of measured attributes, we face the challenge of how to 
extract knowledge from these large and complex data sets. A 
number of statistical developments over the last decade have 
made some of these challenges computationally tractable 
including fast techniques for sampling high-dimensional 
likelihood spaces and techniques for the robust classification of 
observational data. This talk will review some of the notable 
successes and failures and look forward to techniques that might 
be needed to address the Petabyte surveys of the next decade. 

I. INTRODUCTION 
It has been over 15 years since the term "precision 

cosmology” and the concepts of "big-data" were first 
introduced into the astronomical literature. In that time, the rate 
at which experiments collect data has increased over a 
thousand-fold. This increase will continue over the next decade 
with the commissioning of a new generation of experiments and 
satellites (e.g. the Dark Energy Survey [1], the Large Synoptic 
Survey Telescope [2], Euclid [3], the Wide Field Infrared 
Survey Telescope [4], and the Square Kilometer Array [5]). 
These missions will survey large fractions of the sky in a matter 
of days, and generate petabytes of data, for tens of billions of 
sources each with hundreds of measured attributes. Together 
they will address some of the most compelling questions in 
physics today; impacting our understanding of cosmology, the 
physics of the early universe, and even gravity at cosmological 
scales. 

This shift in the way that astrophysicists collect, aggregate, 
and serve data has resulted in a number of statistical and 
computational challenges: how do we extract knowledge from 
large and complex data sets; how do we relate observations to 
the simulations of our universe (which are themselves reaching 
petabyte scales) in order to understand the underlying physical 
processes that give rise to our universe; how do we account for 
the noise and gaps within data streams; and how do we 
understand when we have detected a fundamentally new class 
of event or physical phenomena. This is not just a question of 
the size of the data (collecting and processing petabyte data sets 

scales well with projected technology developments) it is a 
fundamental question of how we discover, represent, visualize 
and interact with the knowledge that these data contain. 

Complementary to the developments in instrumentation, are 
the advances in the statistical techniques that are applied to 
survey data. Many of these approaches can be broken into three 
broad categories: compression, sampling, and classification. In 
this talk, I will look back at the last 10 years of statistical 
developments in these areas and the impact they have had on 
survey science. This will include the introduction of techniques 
to expand the distribution of galaxies in terms of eigenfunctions 
that optimize signal-to-noise in order to estimate the underlying 
power spectrum or clustering of galaxies. I will discuss how 
techniques that enabled early science from cosmological 
surveys (as they were robust to missing and incomplete data) 
were eventually superseded by more traditional approaches as 
the volume of data and the availability of computational 
resources increased.  

I will illustrate how some techniques, such as Markov Chain 
Monte Carlo or random decision forests, became ubiquitous 
throughout astronomy and how their widespread use drove the 
need for improvements in the robustness and efficiency of the 
underlying methodology. This in turn led to the development of 
novel sampling techniques such as importance and nested 
sampling, the decomposition of problems based on their 
computational cost, and the parallelization of the underlying 
algorithms. 

Finally, looking forward to the next decade, I will briefly 
review some of the more recent developments in statistics that 
are gaining traction in our field, such as Approximate Bayesian 
Computation and hierarchical Bayes, and whether these might 
have a similar impact on the science of large survey astronomy. 
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Parallel image reconstruction for multi-frequency
radio-interferometry

André Ferrari, David Mary and Chiara Ferrari
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Abstract—The perspective of the SKA telescope brings new challenges
in image reconstruction. One of these is the spatio-spectral reconstruction
of large (Terabytes) data cubes with high fidelity. MUFFIN (MUlti-
Frequency image reconstruction For radio INterferometry) is a 3D
reconstruction algorithm which combines spatial and spectral priors
which are designed to achieve an efficient parallel implementation. This
implementation opens the possibility of comparing efficient dictionaries,
such as translation invariant wavelet transforms (IUWT), in spatio-
spectral reconstruction.

In the framework of the Square Kilometer Array, an increasing
number of researchers in signal processing and radio astronomy
join in common efforts. One of SKA challenges is the ability to
reconstruct high-fidelity spatio-spectral data cubes (multifrequency
images) of several TeraBytes (TB).

So far, existing image reconstruction algorithms are mostly
monochromatic. Interestingly, sparsity was early recognized as a
powerful principle for reconstruction and has lead to the most pop-
ulated family of imaging algorithms. Their patriarch is the CLEAN
algorithm ([1], devised in 1974), which expresses and exploits the
sparsity of the sky intensity distribution in the canonical basis.
Efficient monochromatic algorithms relying on more general sparse
models (through redundant dictionaries) have since then proven their
efficiency in radio imaging: recent examples include the works [2]
(IUWT), [3], [4] (union of bases), which rely on global minimization
of sparsity-regularized functionals, or [5] (IUWT), which combines
complementary types of sparse recovery methods in a greedy manner.

Most of the approaches for multi-frequency reconstruction rely on
a physical model for the frequency-dependent brightness distribution.
In [6], a Taylor expansion of a power-law is adopted to model the
flux dependence in frequency of astrophysical radio sources. More
recently, reconstruction algorithms relying on parametric models for
this dependence have been proposed. In [7], the authors propose
to address the estimation problem using a Bayesian framework.
The works [8] propose a constrained maximum entropy estimation
algorithm in order to account for the frequency dependence of the
intensities. These “semi-parametric” methods rely on spectral models
and thus clearly offer advantages and estimation accuracy when the
model is indeed appropriate. However, across the broad frequency
coverage of current radio facilities, radio sources exhibiting complex
spectral shapes (not simple power laws) are expected.

In [9], [10], the authors proposed to reconstruct a multi-wavelength
sky image using a fully non-parametric approach. In [11] the authors
also proposed a similar non-parametric approach using a low rank
prior on the sky image cube, whose proximity operator requires the
computation of the singular value decomposition of the data cube.

Denote as (yl,H l,xl) the measurement set, the measurement
operator and the image, at wavelength l = 1 . . . L. MUFFIN relies
on a sparse `1 analysis prior w.r.t. a dictionary Ws for each image
xl and Wλ for the spectra associated to each pixel. The optimization
relies on the primal-dual optimization algorithm [12], [13]. Denoting

This work was supported by MAGELLAN (ANR-14-CE23-0004-01).

as (µs, µλ) the spatial and spectral regularization parameter, the
algorithm reduces to:

1) The master node computes T = µλV
−W †

λ and sends the
column l of T , denoted as tl, to node l.

2) Each node l = 1 . . . L computes sequentially:

∇l = H†l (H lx
−
l − yl), sl = µsW

†
su
−
l (1)

x+
l =

(
x−l − τ(∇l + sl + tl)

)
+

(2)

ũ+
l = sat

(
u−l + σµsW s(2x

+
l − x−l )

)
(3)

3) Each node sends x+
l to the master and the master computes

sequentially: V + = sat
(
V − + σµλ(2X

+ −X−)W λ

)

Note that the particularly time consuming steps associated to: 1. the
computation of the gradients, 2. the decompositions w.r.t. W s and
3. the application of the adjunct operator W †

s, see Eqs. (1,3), are all
computed in parallel at each wavelength. It is worthy to note that µλ
couples the problem w.r.t. the wavelengths. If µλ = 0 the algorithm
iterates Eqs. (1,2,3): each node reconstructs independtly xl.
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⇤ AIM Service d’Astrophysique, CEA Saclay, Orme des Merisiers, 91410 GIF-Sur-YVETTE, France
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Abstract—Imaging by aperture synthesis using interferometric data
is a strong ill-posed and inverse problem. Detection of sources on
deconvolved maps depends on time and frequency integration which
enable to increase the set of Fourier samples of the sky. However, the
improvement of the detection level assumes persistent and flat-spectrum
sources whereas real radio sources can also have their own in the data
(i.e. spectral and temporal behaviors made invisible due to the dilution
of time/freq integration). Hopefully, the spatial, temporal and spectral
reconstructions are separable problem which can be addressed separately.
For transient sources, we introduce independent spatial and temporal
wavelet dictionaries to sparsely represent a transient source in both
spatial domain and temporal domain. For spectral sources, we designed a
new deconvolution algorithm derived from GMCA to image data cubes in
their spatial and spectral dimensions. We present the design and results of
these new deconvolution algorithms developed in the Compressed Sensing
framework. They enable the reconstruction the time profile of radio
transients and the reconstruction of spectral profiles of wide-frequency
sources.

I. NEW CHALLENGES FOR RADIO IMAGE DECONVOLUTION

Radio interferometric Imaging via aperture synthesis has been an
active field of research for ⇠40 years. The incomplete knowledge
of the visibility function of the sky sampled by an interferometer
requires solving a strong ill-posed deconvolution problem. Tools
such as CLEAN and its derivates (e.g. [1], [2], [3]) have been
standards for recovering missing information in the Fourier plane.
However, in the framework of Compressed Sensing, several teams
have proposed new methods (e.g. [4], [5], [6] and other references
therein). In addition, next generation of giant interferometers such as
LOFAR, suffers from “direction-dependent” effects which distort the
Fourier relationship between the measurements and the sky (such as
array non-coplanarity and dipole projection). In [4], a new imager
compatible with LOFAR combined both a sparse approach given
by the CS theory and corrections for A and W effects [7]. It
also demonstrated better angular resolution and lower residuals as
compared to classical methods, on simulated and real datasets.

These giant instruments also probe the Universe in a wide temporal
and spectral window that need to be properly observed and recon-
structed. We present in the following, two parallel studies: sparse
temporal reconstruction of transient sources and sparse multichannel
image deconvolution which could bring important implication on the
study of spectrally or temporally rich astrophysical sources.

II. TRANSIENT DETECTION

Thanks to new sensitive instrumentation, the study of known
class of transient sources (e.g. pulsars for general relativity tests,
Active Galactic Nuclei, etc) and the recent discovery of new class of
transients (e.g. Rotating Radio Transients, Fast Radio Bursts, Lorimer
type bursts, see [8]) has motivated further development for transient
detection and characterization.

A lot of effort has been put into the development of detection
pipelines (e.g. the LOFAR TRAnsient Pipeline – TRAP [9], based

on fast iterative closed-loop performing calibration / imaging / source
detection / catalogue cross-matching). However, being variable and
mostly point-like, the transients imaging suffers from the imaging
rate. On the one hand, short time integration enables temporal
monitoring of a transient, but each snapshot provides poor visibility
coverage. On the other hand, long time integration images ensures
a good sampling, but it will average out the temporal variation of
the source. As a result, a variety of transient radio sources might be
missed due to uncertainties or timescale filtering. Consequently, it is
difficult to use classical imagers to detect and image transient source
when the temporal variability of the transient source is unknown.

We present here a new deconvolution method, based on the CS
framework, which take into account the temporal dependence of
the sky. By extending previous work [4], we proposed a “2D-1D”
sparse reconstruction technique based on the Condat-Vũ splitting
method[10], [11] and the use of the isotropic undecimated wavelets
transform [12] to reconstruction the spatial 2D space, and Haar or
biorthogonal CDF 9/7 wavelets to reconstruct the 1D temporal axis.
We will show the performance of the reconstruction on simulated
data and on real data containing a radio transient.

III. MULTI-CHANNEL DECONVOLUTION

Instrument like the SKA will provide a high number of fre-
quency channels that contain physical information on the sources.
Its instantaneous sensitivity enables channelized imaging (as op-
posed to frequency-blurred images) and therefore, enables source
spectroscopy. By dealing with a mixture of convolved point sources
and extended emission (each following its own spectral behaviour),
spectral imaging requires spectral source separation in addition to
spatial deconvolution.

Blind Source Separation (BSS) is a challenging matrix factorisation
problem that plays a central role in multichannel imaging science.
In a large number of applications, such as astrophysics, current
unmixing methods are limited since real-world mixtures are generally
affected by extra instrumental effects like blurring. Therefore, BSS
has to be solved jointly with a deconvolution problem, which requires
tackling a new inverse problem: deconvolution BSS (DBSS) . In this
work, we introduce an innovative DBSS approach, called DecGMCA
[13], based on sparse signal modelling and an efficient alternative
projected least square algorithm. Numerical results demonstrate that
the DecGMCA algorithm performs very well on simulations. It
further highlights the importance of jointly solving BSS and decon-
volution instead of considering these two problems independently.
Furthermore, the performance of the proposed DecGMCA algorithm
is demonstrated on simulated radio-interferometric data.

REFERENCES
Find all references for this abstract on
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Nezihe Merve Gürel†, Paul Hurley†, and Matthieu Simeoni†‡
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Abstract—Noise reduction in radio interferometers is a formidable
task due to the relatively weak signals under observation. The usual
strategy is to compensate with a large number of antennas and extend
the observation time. We showed recently that one could de-noise directly
antenna time-series, under the assumption of uncorrelated noise. This
work is a first step to extend it for when crosstalk is present. We first
propose a subspace based algorithm to estimate noise covariance, and
then demonstrate that the noise covariance can be accurately estimated,
and the image de-noised. We show sky images generated using a core
station LOFAR, and that even with one tenth the observation time (and
thus one tenth the data) the estimate can still be enhanced.

EXTENDED ABSTRACT

To date, radio interferometers compensate for noise by throwing
data and energy at the problem: observe longer, then store and
process it all [1]. Furthermore, only the end sparse image is denoised,
reducing flexibility substantially.

In [3], we proposed to denoise the phased-array signals directly in
real-time given uncorrelated noise. The method is intimately related
to low-rank approximation, removing the noise subspace explicitly
at the antenna level. In real-life scenarios, however, interference can
be introduced by the adjacent circuits embedded in antenna receivers.
While widely applicable, the method as presented struggles to remove
crosstalk from the samples due to correlation.

Denoising antenna samples in the presence of crosstalk requires
a model of the underlying correlation. The present work is two-
fold: infer the parameters of the noise distribution using covariance
samples, and show that, already at the visibility level at stations,
impressive denoising occurs. We will therefore justify our algorithm
by ascertaining a sky image from the residual covariance matrix after
noise is removed.

Consider L closely located antennas where the sample taken by
lth antenna at time tn is denoted by xl(tn) ∈ C. The spatial-
series governed by antenna samples can be formed as x(tn) =
(x1(tn), ..., xL(tn)) such that

∑L

l=2
|xl(tn) − xl−1(tn)| is min-

imised. The respective covariance sample is then given by
Σ(tn) = x(tn)x(tn)

†.
Typically, an estimate of the covariance matrix over N samples is

computed by

Σ̂ =
1

N

N∑

n=1

Σ(tn). (1)

An inherent assumption follows. Source signals are uncorrelated to
the noise which in turn implies that noise and the true (the absence
of noise) subspaces are separable, namely that the covariance sample
can be decomposed such that

Σ(tn) = Σtrue(tn) + Σnoise(tn) (2)

where the true and noise components are uncorrelated. In practical
applications, however, separability refers to small correlation coeffi-
cient [2].
Given the above argument, here is a sketch of the method:
1. Perform SVD of Σ(tn)
2. Reconstruct rank-one bi-orthogonal elementary matrices to decom-
pose Σ(tn) = Σ1(tn) + ...+ ΣL(tn)

3. Cluster the elementary matrices by computing similarities between
the elementary matrices, i.e., correlation coefficients
4. Assign the cluster with the Empirical Orthogonal Functions (EOF)
at higher frequencies to the noise covariance and denote the respective
set of indices by Inoise ⊂ {1, ..., L} (This labeling is due to slow-
varying property of the true spatial-series.)
5. Reconstruct the noise covariance as follows

Σnoise(tn) =
∑

i∈Inoise Σi(tn).

Repeat the above steps for each time-instance to reconstruct Σ̂noise

(See Equation 1). The denoised covariance matrix Σ̂true is thus given
by Σ̂− Σ̂noise.

An application of the method to data from a LOFAR core station
numerically validated our algorithm. Fig.1 demonstrates that the least-
square images has been significantly cleared up by removing the noise
from the covariance estimate. In particular, Fig.1(b, e) shows that the
algorithm successfully split the correlated noise even when fewer
number of samples are used over time. It thus suggests that we can
drastically reduce the observation time to accurately generate images
as well as to extract the noise parameters. This shows that heuristic
arguments are in agreement with simulation.

(a) (b) (c)

(d) (e) (f)

Fig. 1. The white circles denote where sources are. Noisy/denoised least-
square estimates of the real sky are provided for 1000 and 100 time samples,
respectively in (a)/(d) and (b)/(e). For a synthetically generated sky corrupted
by real noise, we repeated the experiment. The noisy and denoised estimates
over 1000 time samples are given in (c) and (f), respectively. We observe
that identification of true sources is far easier and artefacts are significantly
reduced when noise is split from the measurements.

The method yields accurate estimates of the noise covariance
samples. The question of fitting a statistical model to the noise is thus
the next direction for future research. Stochastically well-modelled
noise thus permits us to extract the true behaviour of antenna signals.
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Abstract—A typical experiment contains many elements, each of which
may be subject to error, or noise. In order to perform robust statistical
inference, a complete statistical model of the data needs to be built,
and this may be a complex task. Here we describe one such complex
experiment, a cosmological weak lensing survey, and show how a Bayesian
Hierarchical Model (BHM) may be utilised effectively. For a given set of
theoretical model parameters, the power spectra of various lensing fields
are specified, but the map values are not, and these, when pixelised,
constitute a very large number of unknown hidden or latent variables.
Sampling from such a high-dimensional space is challenging, but possible
with Gibbs sampling or Hamiltonian Monte Carlo techniques. In this talk
I show how this problem can be solved, with messenger fields for gaussian
fields, demonstrate results from application to data, and discuss future
directions.

I. INTRODUCTION

Light from distant galaxies is continuously deflected by the grav-
itational potential fluctuations of large-scale structure on its way
to us, resulting in a coherent distortion of observed galaxy images
across the sky — weak gravitational lensing. This weak lensing effect
is a function of both the geometry of the Universe (through the
distance-redshift relation) and the growth of potential fluctuations
along the line-of-sight, making it a tremendously rich cosmological
probe; the statistics of the weak lensing fields are sensitive to the
initial conditions of the potential fluctuations, the relative abundance
of baryonic and dark matter (through baryon acoustic oscillations),
the linear and non-linear growth of structure, the mass and hierarchy
of neutrinos, dark energy and gravity on large scales. The goal of
cosmic shear analyses is to extract cosmological inferences from the
statistics of the observed weak lensing shear field — the distortion
of observed galaxy shapes measured across the sky and in redshift.

In [1] we developed a Bayesian hierarchical modelling (BHM)
approach to inferring the cosmic shear power spectrum (and thus
cosmological parameters) from a catalogue of measured galaxy
shapes and redshifts, building on previous work on cosmic microwave
background (CMB) power spectrum inference (e.g. [2]) and large
scale-structure analysis methods (e.g. [3]). The Bayesian hierarchical
approach has a number of desirable features and advantages over
traditional estimator-based methods: In contrast to frequentist es-
timators whose likelihoods need calibrating against large numbers
of forward simulations (introducing assumptions and uncertainties
that are often hard to propagate), the Bayesian approach explores
the posterior distribution of the parameters of interest directly with
clearly stated (and minimal) model assumptions, without the need
for calibration. The Bayesian approach is exact and optimal, up to
our ability to model the cosmic shear statistics (and systematics).
Masks and complicated survey geometry are dealt with exactly and
cleanly, in contrast to, e.g., pseudo-C` estimators where the mask
inversion leads to mixing of E- and B-modes and physical (angular)
scales that needs to be carefully accounted and corrected for. The
BHM approach can be readily extended to include models of non-
Gaussian fields, exploiting more of the information-content of the
weak lensing fields than is possible through n-point statistic estima-
tors [3], [4], [5]. More generally, the BHM approach can also be

extended to incorporate more of the weak lensing inference pipeline
(e.g., shape measurement, PSF modelling etc), formally marginalising
over nuisance parameters and systematics in a principled way and
ultimately leading to more robust science at the end of the day (see
[1], [6] for a discussion of the global hierarchical modelling approach
to weak lensing).

In this work, we develop a Bayesian approach to cosmic shear
inference, whereby we jointly sample the shear maps and cosmo-
logical parameters, rather than the maps and power spectra. By
going straight to cosmological parameters and bypassing the explicit
power spectrum inference step, we circumvent the need to transform
posterior samples into a continuous posterior density and hence avoid
the prickly (high-dimensional) density estimation issues altogether.
There are other advantages, too: by parametrising the power spectrum
with a handful of cosmological parameters, the number of interesting
parameters has been reduced from a few thousand power spectrum
coefficients to typically ∼ 10 cosmological parameters – this re-
duction in the parameter space will inevitably improve the sampling
efficiency. Map-cosmology inference also extends naturally to incor-
porate models for non-Gaussian shear where the power spectrum no
longer fully specifies the lensing statistics and is a (comfortably)
computationally feasible approach for current and future surveys.

In this work we apply the map-power spectrum and map-
cosmology sampling schemes to infer power spectra, shear maps and
cosmological parameters from the Canada-France-Hawaii Telescope
(CFHTLenS) weak lensing survey - the first application to data.1
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Abstract—The statistical properties of parameter estimation with
nested sampling differ from those of Bayesian evidence calculation, but
have been little studied in the literature. This poster explains the different
sources of stochastic errors in nested sampling parameter estimation, and
includes a new diagrammatic representation of the process. We find no
current method can accurately measure the error in parameter inferences
from a single nested sampling run, and give a new method for doing so.
We introduce dynamic nested sampling — a generalisation of the nested
sampling algorithm which promises increased efficiency in parameter
estimation.

I. INTRODUCTION

Nested sampling [1] is a Monte Carlo method for Bayesian analysis
which simultaneously calculates both Bayesian evidences and poste-
rior samples. The early development of the algorithm was focused on
evidence calculation. However contemporary implementations such
as MULTINEST [2]–[4] and POLYCHORD [5], [6] are now also
extensively used for parameter estimation from posterior samples (see
for example [7]).

Nested sampling compares favourably to MCMC-based parameter
estimation for degenerate, multi-modal likelihoods as it has no
“thermal” transition probability and exponentially compresses the
prior distribution to the posterior. Despite its increasing popularity, the
stochastic errors in nested sampling parameter estimation are poorly
understood.

II. NESTED SAMPLING PARAMETER ESTIMATION

This poster explains stochastic errors in parameter estimation, and
shows that any such calculation can be represented in 2 dimensions.
We present a new diagram for visualising the process.

Correctly quantifying uncertainty is vital for identifying spurious
results — in particular we find stochastic errors often significantly
affect estimates of confidence intervals on parameters. Conversely,
finding such errors are very small may imply an unnecessarily large
amount of computational resource is being used for the calculation.
Interestingly, we find no current method can accurately estimate
errors on parameter estimation from a single nested sampling run,
and so we describe a new method for doing this.

III. DYNAMIC NESTED SAMPLING

Nested sampling was designed for calculating Bayesian evidences,
and a typical calculation spends most of its computational effort
iterating towards the posterior peak, producing posterior samples with
negligible weights. The fraction of computational effort spent near the
posterior peak is set by the likelihood and the priors; in contemporary
nested sampling this cannot be adjusted when parameter estimation
is the primary goal.

We propose modifying the nested sampling algorithm by dynam-
ically varying the number of “live points” in order to maximise
the information gained from posterior samples, subject to practical
constraints. We term this more general approach dynamic nested
sampling, with conventional nested sampling representing the special
case where the number of live points is constant. This can increase
the effective number of posterior samples and the accuracy of their

relative weights — additional errors on the absolute weights of all
samples do not affect parameter estimation.
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Abstract—Bayesian inference and compressed sensing are both well-
established methods for data analysis. Typically, however, these two
approaches are considered to somewhat distinct from one another, and
this is often reflected in the relatively small overlap of the communities
who develop and apply each technique. Nonetheless, the two methods
do, in fact, have a considerable amount in common and a Bayesian
interpretation of compressed sensing, and sparsity more generally, has
been pursued by a number of authors. In this talk, I will develop this link
more fully and discuss how Bayesian inference provides a very natural
framework for sparsity and compressed sensing.

In particular, I will outline a principled Bayesian approach for
simultaneously imposing sparsity and performing dictionary learning
to determine the optimal basis set for representing the signal. In
this method, a signal is modelled as the superposition of a set of
basis functions, whose number and form are determined by the
data themselves. Sparsity is imposed directly via the prior on the
number of basis functions, while simultaneous dictionary learning
is performed through the estimation of parameters describing the
location and shape of the basis functions. In principle, the number
n of basis functions may be determined through Bayesian model
selection and the evaluation of the evidence as a function of n.
It is both more convenient and flexible, however, but nonetheless
equivalent, to determine n using parameter estimation, whereby n
is instead allowed to vary dynamically and one samples directly
from the joint posterior of n and the parameters describing these
n basis functions. The final inference may then be obtained by
either by choosing the maximum aposteriori value of n, or better,
by marginalising over n to yield an implicit multimodel solution.

I will demonstrate the practical implementation of this method
in some simple test problems. To achieve an algorithm that is
computationally not too burdensome, a number of issues need to
be addressed. Rather than using costly transdimensional sampling
technqiues, such as reversible-jump MCMC, to accommodate the
fact that the dimension of the parameter space can vary, we instead
use a product-space approach in which one considers a space of
fixed dimensionality equal to the largest that can be encountered.
Since the number n of basis functions is an (effective) integer
parameter, the technique used to explore the parameter space should
not rely on gradient information. Moreover, by considering the full
joint space of n and the parameters describing the basis functions,
one will typically need to accommodate spaces of moderate to
large dimensionality, most likely possessing multiple modes and/or
pronounced degeneracies. In practice, nested sampling is well suited
to such problems, and therefore we adopt its latest and most efficient
implementation, PolyChord, which can accommodate up to around
1000 dimensions.

Since our approach is based in parameter estimation using nested
sampling, it is important to understand the statistical properties of this
process, which differ from those of Bayesian evidence calculation, but
have been little studied in the literature. In particular, I will outline
different sources of stochastic errors in nested sampling parameter
estimation, and introduce a new diagrammatic representation of
the process. We find no current method can accurately measure
the error in parameter inferences from a single nested sampling

run, and I will describe a new method for doing so. I will also
introduce dynamic nested sampling: a generalisation of the nested
sampling algorithm which promises increased efficiency in parameter
estimation. This is based on modifying the nested sampling algorithm
by dynamically varying the number of ‘live points’ in order to
maximise the information gained from posterior samples, subject to
practical constraints.
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Abstract—Beamforming in radio astronomy focuses at and around a
direction using matched beamforming or a derivative, to both maximise
the energy coming from this point and reduce the data rate to the
central processor. Such beamformers often result in large side-lobes, with
influence from undesired directions. Moreover, there is a fundamental
lack of flexibility when, for example, targeting extended regions or
tracking objects with uncertainty as to their location.

We show how the analytic framework Flexibeam can be leveraged to
achieve beamshapes that cover general spatial areas with substantially
more energy concentration within the region-of-interest. The method is
numerically stable, and scalable in the number of antennas, and does
not magnify noise.

EXTENDED ABSTRACT

Beamforming in radio astronomy has mostly been a byword for
matched beamforming: focus on and around one point in the sky
by phase aligning the antenna signals. It is essentially dual-purpose:
get information with high SNR around that point, while reducing the
amount of data to send from a station to the central processing, so
as to compress and reduce complexity.

While simple, there are quite a few drawbacks. The side-lobes
induced are large, polluting substantially the data observed. Power
is maximised from this one direction in the sky, but sees relatively
little of the rest of it. Hence, surveying large portions requires
multiple observations, steering towards various locations successively.
Additionally, it is very sensitive to uncertainty in the target, and
indeed only one point can be targeted at any given time.

Instead, it would be desirable to specify a general spatial sky
filter, not necessarily contiguous, and determine how to beamform
so as to approximate the filter. This framework is provided by
Flexibeam [1]. A spatial filter is described over the sphere S2, from
which an extended filter in R3 is chosen. A beamforming function is
then obtained over Euclidean space R3. From this, the beamforming
weight for an antenna is given by sampling the beamforming function
at its position p ∈ R3.

The analytical framework allows tractable, and numerically stable
weight determination. It scales linearly with the number of antennas
(just add additional samples for more antennas) – a key advantage in
radio interferometers with thousands of antennas.

Suppose we wish to observe a specific region on the sphere. One
good choice of extended filter is then the 3D ball indicator defined
by ω̂(r) = 1 if ‖r − r0‖ ≤ R and 0 otherwise, where r0 ∈ S2, and
R > 0 specifying the width of the targeted region. The resultant
beamforming function, from which the beamforming weights are
obtained, is given by:

ω(p) = R
−1/2‖p/λ‖−3/2

J3/2 (2πR‖p/λ‖) e−j2π〈r0,p/λ〉,

where J3/2 is a Bessel function of the first kind, and p ∈ R2. We
can thus approximate beamshapes of various widths, as illustrated in
Fig. 1 (for an LBA core LOFAR station composed of 96 antennas,
with the frequency of 45MHz). Notice how Flexibeam dramatically
reduces side lobes, and that we can get much more of the beam
energy where we want it.

Suppose we wish to scan a region as shown in Fig. 2, which
compares the use of multiple matched beams through progressive

(a) Matched beamforming. (b) Flexibeam, θ = 15
◦.

(c) Flexibeam, θ = 35
◦. (d) Flexibeam, θ = 85

◦.

Fig. 1: Beamshapes illustrating how Flexibeam can survey large
portions of the sky in radio-astronomy with reduced side-lobes.
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Fig. 2: Comparison, in 2D, of matched beamforming successive scan
vs. a single Flexibeam beamshape with the same observation time.

scan, versus multiple observations using a Flexibeam-determined
beamshape. More signal in the area of interest is obtained with
Flexibeam. Here it amplifies the signal by 26.2% in the region of
interest with respect to matched beamforming. Flexibeam also has
33% less energy in the side-lobes.

By use of the computationally low-cost Flexibeam framework we
are able to use one instrument for many different use cases, designing
spatial filters with corresponding beamforming functions so as to
search in multiple areas or track a pulse. Recent work has also
shown how these beamshapes can be incorporated efficiently into
the imaging pipeline [2].
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Abstract—The Murchison Widefield Array (MWA)1 is a low-frequency
radio telescope sited in the Western Australian outback. It is a precursor
to the low-frequency Square Kilometre Array and has been fully
operational since 2013, testing software and hardware solutions for the
challenge of low-frequency radio astronomy. A large team of engineers
and astronomers across twenty-two partner institutes and six countries
have worked to deliver cutting edge science from the resulting data. This
talk will explore some of the unique signal processing challenges for the
MWA, in both its current state and after future upgrades.

I. INTRODUCTION

The MWA consists of 2048 dual-polarization dipole antennas
optimized for the 80–300 MHz frequency range, arranged as 128
”tiles”, each a 4x4 array of dipoles. A complete technical description
of the telescope is given in the journal article: The Murchison
Widefield Array: The SKA Low Frequency Precursor by Tingay et
al. (2013) [1]. The array has no moving parts, and all telescope func-
tions including pointing are performed by electronic manipulation
of dipole signals, each of which contains information from nearly
four steradians of sky centered on the zenith. Each tile performs an
analog beamforming operation, narrowing the field of view to a fully
steerable 25 degrees at 150 MHz.

To best exploit these data, imaging challenges have been met with
appropriate solutions, which will be detailed in this talk:

• The antennas are not co-planar, necessitating the use of advanced
widefield imaging software such as WSCLEAN [2];

• The aperture array antennas and minimum analogue beamformer
delays result in an unusual primary beam, necessitating snapshot
imaging, and complicating flux calibration;

• The ionosphere refracts incoming astronomical radio signals,
causing apparent source position shifts over the sky; while
visibility-based solutions are possible [3], cheaper image-based
solutions are also useful (Fig. 1);

• Final images have resolutions differing by a factor of two over
the band; the new source-finding technique of priorised fitting
is necessary to properly describe sources (Fig. 2).

This talk will present solutions to these varied problems and how
they were used to perform a large-scale sky survey, completely
imaging the southern radio sky and flux-calibrating it to better than
8 %, impressive for an aperture array. A description of this GaLactic
and Extragalactic All-sky MWA (GLEAM) survey is given by Wayth
et al. (2015) [4] and the first extragalactic sky catalogue is presented
by Hurley-Walker et al. (2016, accepted).

The telescope is now being reconfigured into a configuration with
redundant baselines, in order to maximise calibratability and sensi-
tivity on angular scales sensitive to the Epoch of Reionisation. Next
year, it will be transformed again, into a long-baseline configuration,
for high-resolution observations of distant astronomical objects. In
future, a planned upgrade will increase the instantaneous bandwidth

1http://mwatelescope.org/

from 30 MHz to > 100MHz, and improve spectral smoothness for
spectral line and EoR observations. All of these configurations entail
new signal processing challenges, which will explore a calibration
parameter space of interest to the upcoming Square Kilometre Array.
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Fig. 1. Ionospheric model-fitting over the MWA’s 60◦ field-of-view: the left
panel shows how the ionosphere distorts apparent source positions, and the
right panel shows a radial basis function model fit to these distortions, which
can be used to correct the images during typical ionospheric conditions.

Fig. 2. Four example images from the GLEAM survey: source-finding is
performed in the highest-resolution image at 200 MHz (left-most panel), while
priorised fitting is performed on lower-resolution sub-bands (right panels), in
order to prevent noise bias when fitting faint sources, avoid a difficult cross-
matching problem, and preserve morphological information.
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Abstract—Next generation cosmological surveys will provide an
avalanche of cosmological observations. This increase in scientific data
needs to be accompanied with the development of novel information
processing techniques to interpret such observations. Analyses of three
dimensional inhomogeneous large scale structures require to jointly
account for complex dynamical processes, associated to the gravitational
formation history of the dark matter distribution, together with system-
atic as well as stochastic effects arising from observational procedures.
Addressing these issues often requires to solve non-linear statistical
inference problems in multi-million dimensional parameter spaces. We
address this problem of high dimensional Bayesian inference from
cosmological data sets via our recently developed BORG algorithm. This
approach couples three dimensional numerical models of cosmological
structure formation with a Hybrid Monte Carlo algorithm. By exploring
plausible data constrained realizations of cosmic history this approach
provides new avenues to study the full four dimensional state of our
Universe in data.

I. INTRODUCTION

Just recently the standard model of cosmology, describing the
homogeneous evolution of the Universe and formation of struc-
ture, has been celebrated to successfully explain cosmic microwave
background (CMB) observations provided by ESA’s Planck satellite
mission [1]. According to this model present dynamical evolution of
our Universe is governed by dark energy and dark matter, constituting
about 95 % of its total content. Although required to explain the
formation of all observable structures within the picture of Einstein’s
gravity, so far dark matter and dark energy elude direct observations
and have not yet been identified as particles within fundamental
theories.

To make progress on these prevailing cosmological mysteries next
generation cosmological surveys will go beyond two dimensional
observations of the CMB by mapping the three dimensional cosmic
large scale structure (LSS) with observed galaxies in the Universe.
This promises to provide orders of magnitudes of additional infor-
mation on the dynamical processes governing the evolution of our
Universe.

However, connections between observations and our physical the-
ories of the Universe cannot be established trivially. Besides typical
stochastic and systematic effects associated to noisy and incomplete
observations, analyses of modern deep observation also needs to
account for the non-linear and dynamical evolution of the cosmic LSS
throughout the observed domain. In particular, deep cosmological
observations do not consist in time homogeneous measurements.
Due to the finite speed of light we observe the galaxy distribution
at earlier and earlier cosmic epochs with increasing distances. This
light cone effect poses a challenge for cosmological data analysis
as the nature and statistical properties of the subject to study vary

greatly across observed volumes. In addition to such light cone
effects, observations also suffer from non-linear and linear redshift
space distortions associated to the motion of observed objects inside
gravitationally forming structures.

We propose to address these issues with our recently developed al-
gorithm for Bayesian Origin Reconstruction from Galaxies (BORG).
The BORG algorithm is a fully probabilistic inference machinery
incorporating a physical model of gravitational structure formation.
More specifically the algorithm fits numerical simulations to three di-
mensional observations. This results in a highly non-trivial Bayesian
inverse problem, requiring to explore the very high-dimensional
and non-linear space of plausible solutions to the initial conditions
problem from incomplete observations [2], [3]. These parameter
spaces typically consist in 106 to 107 parameters, corresponding
to the discretized volume elements of the observed domain. We
solve this large scale inference problem with the implementation
of efficient Hamiltonian Monte Carlo techniques permitting us to
recover the cosmic initial conditions and the formation history of
observed structure over a period of about 13.6 billion years.

As scientific results the BORG algorithm infers three dimensional
initial conditions from which observed structures originate, non-linear
density and velocity fields and provides dynamic structure formation
histories including a detailed treatment of uncertainties [2], [3], [4].
This work is a clear demonstration of the technical feasibility of large
scale data interpretation with complex numerical models and provides
novel avenues to study the full four dimensional state of our Universe
in observations.
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Abstract—We present a new Morphological Component Analysis-based
method designed to separate astronomical objects with different colours
and show the results of its application to real Hubble images. We
also show how such separation can be used to infer cosmological and
astrophysical results on dark matter distribution in galaxy and cluster
and on galaxy evolution and formation.

I. INTRODUCTION

The relative crowdedness of our Universe makes images of ob-
jects overlap with one another. These objects very often present differ-
ent colours, whether it is due to their age or to their evolution and star
formation history. Young and star forming object will appear blue,
whereas old quiescent galaxies will be seen red in visible multi-band
observation. We showed that it was possible to teach our computers
to distinguish between colourful objects in astronomical images and
to separate them in a model independent way. We expressed the
problem of colour blending as a blind source separation problem that
we solve by inverting the linear problem under a sparsity constraint
in wavelet space [1]. We implemented the solution algorithm, called
MuSCADeT (https://github.com/herjy/MuSCADeT), and applied our
method to real observations: the Hubble Frontier Fields (http://www.
stsci.edu/hst/campaigns/frontier-fields/HST-Survey).

The Hubble Frontier Fields (HFF) is one of the deepest high
resolution survey available to date in the visible and near infra-red.
The survey targeted 6 galaxy clusters that had been selected for their
lensing strength. These massive objects produce number of magnified
multiple images of single background galaxies through an effect
called strong gravitational lensing. The positions and magnifications
of strongly lensed images can be used to constrain the mass density
profile of the clusters, thus tracing the distribution of dark matter in
these regions of our Universe.

Once the red and blue images of galaxies separated, our results
revealed new hidden candidates for strongly lensed objects, thus
allowing the prospect for more precise constraints on the mass density
distribution of the clusters. More importantly, this allows for accurate
photometry of the background lensed objects. Until now, blending
made any attempt of measuring how gravitational lensing magnifies
the multiple images of background objects impossible. Our method
allows to remove, or at least diminish this bias, and we show that
we can already use this new measurement to discriminate between
existing mass models of the HFF clusters. With this method we
should be able to provide an extra constraint on mass models that
has never been used until now, thus helping refine our knowledge of
dark matter properties.

Not only our method is very well adapted to study strong
gravitational lenses, but also, we showed that it was possible to
separate the young from the old stellar populations inside single spiral
galaxies. For the first time, we are able to study the morphology of
these populations beyond the limitation of model fitting of either

component. We compare the properties of red and blue components
of galaxies as shown on fig. 1 and relate these properties to their
environment and position, relative to the cluster.

More about MuSCADeT, see http://www.cosmostat.org/research/
galaxy-colour-component-separation/

Fig. 1. Result of the separation of three Frontier Fields galaxies by
MuSCADeT. Left panels: blue component, middle panel: Original image, left
panel: red component.
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Abstract—Next-generation radio-interferometers face a
computing challenge with respect to the imaging techniques
that can be applied in the big data setting in which they are
designed. Dimensionality reduction can thus provide essen-
tial savings of computing resources, allowing imaging meth-
ods to scale with data. The work presented here approaches
dimensionality reduction from a compressed sensing theory
perspective, and links to its role in convex optimization-
based imaging algorithms. We describe a novel linear dimen-
sionality reduction technique consisting of a linear embed-
ding to the space spanned by the left singular vectors of the
measurement operator. A subsequent approximation of this
embedding is shown to be practically implemented through
a weighted subsampled Fourier transform of the dirty im-
age. Preliminary results on simulated data with realistic
coverages suggest that this approach provides significant
reduction of data dimension to well below image size, while
achieving comparable image quality to that obtained from
the complete data set.

The large amount of data produced from next-generation
telescopes like the Square Kilometre Array (SKA) presents a
computational challenge for imaging methods, and calls for
High Performance Computing (HPC)-ready solutions. Here
we present our dimensionality reduction technique as a way
to handle big data, and show that radio-interferometric (RI)
imaging algorithms applied on significantly reduced data us-
ing the proposed method retain image reconstruction quality.
The results detailed here are based on preliminary studies as
presented in [1].

RI data acquisition can be modelled through the discretized
form of a measurement equation, given by y = Φx + n. Here
y ∈ CM is a vector of continuous Fourier measurements (visi-
bilities) corrupted by additive noise n ∈ CM ; we assume n to
have i.i.d. Gaussian noise statistics. The visibilities y measure
an underlying vectorized image x ∈ CN , and Φ ∈ CM×N is the
measurement operator, with M � N .

Linear dimensionality reduction is performed through an
embedding matrix R ∈ CML×M , ML � M, leading to the
reduced inverse problem y ′ = Φ′x + n′, with y ′ = Ry, n′ = Rn,
and Φ′ = RΦ. Consequently, imaging algorithms need only deal
with the embedded measurement vector of dimension ML , thus
avoiding expensive computations involving large vectors of size
M. As an embedding operator, R affects not only the mapping
to y ′ but also the properties of Φ required by CS theory to
guarantee stable signal recovery. Additionally, retaining the
i.i.d. Gaussian properties of the original measurement noise is
important for the convex optimization-based algorithms used
for image reconstruction.

The optimal dimensionality reduction Roptim, with respect to
CS-based image reconstruction, is a projection to the left singu-
lar vectors of the measurement operator Φ that correspond to
non-zero singular values. For a Singular Value Decomposition
(SVD) of Φ given by Φ = UΣV†, the optimal embedding is then
given by Roptim = U0

† = Σ0
−1V0

†Φ†, where the final data size
ML = N0 ≤ N is the number of non-zero (or significant) singular
values of Φ, and where U0, Σ0 and V0 are truncated versions of
U, Σ, V by only retaining columns (rows for V) corresponding to
the N0 non-zero (or significant) singular values of Φ. However,
this requires the SVD, which is computationally expensive
and hence infeasible. So, a practical implementation of this

optimal embedding is constructed through the approximations
V† ≈ F and Σ2 ≈ Diag(FΦ†ΦF†), leading to the embedding
operator Rsing = Σ0

−1SFΦ† ∈ CN0×M . In words, this involves
the following operations in sequence: computing the dirty image
by applying Φ†, an N-sized Fourier transform F, a subsampling
through S, retaining only those dimensions corresponding to
non-zero (or significant) singular values of Φ, and finally, a
weighting Σ0

−1. The weighting ensures that the noise covariance
matrix in the embedded dimension has diagonal elements cor-
responding to the original variance of the measurement noise n.
We also note that Rsing has a fast implementation as it consists
of diagonal, sparse and Fourier matrices only. Simulations were
performed to compare this proposed dimensionality reduction
Rsing with a weighted subsampled version of the standard
‘gridding’ operation G performed in radio interferometry, given

by Rgrid = WSG ∈ CN×M (N ≤ 4N for an oversampling factor
of 2 in the computation of the Fourier transform).

Here we show reconstruction results on an N = 256 × 256
model image of the M31 Galaxy. M = 50N continuous visi-
bilities are sampled following a realistic SKA-like uv coverage.
The ‘input’ SNR, defined as ISNR = 20 log10(‖y0‖2/‖n‖2)
with y0 = Φx being visibilities uncorrupted by noise, is set
to 30 dB. Similarly, the ‘output’ SNR is defined as OSNR
= 20 log10(‖x‖2/‖x − x̂‖2), x̂ being the reconstructed image.
Our simulations show that an OSNR of ≈25 dB is reached in
the absence of embedding, although at a heavy computational
cost owing to the 3.2 million visibilities. Reconstruction after
Rgrid achieves an OSNR of ≈25 dB with ML = 4N . Crucially,
much more aggressive dimensionality reduction is possible with
Rsing, which obtains an OSNR of ≈24.5 dB, but from a data
size ML = 0.25N . The robustness of Rsing compared to Rgrid is
illustrated in the figure below through the reconstructed, error
and residual images for both methods embedding data to 5%
of image size. We note that image reconstruction from data
embedded to 0.05N using Rgrid is poor compared to Rsing, as
is seen from the artefacts in the reconstructed image and the
more prominent residual structure in the bottom row for Rgrid.
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Abstract—In order to shed some much needed light on fundamental
questions such as the nature of dark energy, most next generation
cosmological surveys will probe the Universe by accurately measuring
the apparent shapes of billions of distant galaxies. As current shape
measurement methods suffer from various biases, a precise calibration
will be necessary in order to meet the requirements of the science analysis.
In this work, we investigate the application of recent advances in deep
conditional generative models as a way to synthesize large calibration
sets of high-quality realistic galaxy images. We implement a conditional
variant of the Variational Auto-Encoder, a state-of-the-art deep generative
model based on variational Bayesian methods, and fit the model on
data from the COSMOS survey. We assess the quality of the generated
images with an extensive set of morphological statistics and find excellent
agreement with real galaxy populations.

I. INTRODUCTION

Weak gravitational lensing, i.e. the minute deflection of the light
from distant objects by the intervening massive large scale structures
of the Universe, has long been identified as one of the most powerful
probes to investigate the nature of dark energy. As such, weak
lensing is at the heart of the next generation of cosmological surveys
such as LSST [1] or Euclid [2] . One particularly crucial source of
systematic errors in these surveys comes from the shape measurement
algorithms tasked with estimating galaxy shapes (from which the
weak lensing signal is extracted). The last community challenge [3]
to assess the quality of state-of-the-art shape measurement algorithms
has in particular demonstrated that all current methods are biased to
various degrees and, more importantly, that these biases depend on the
details of the galaxy morphologies. These biases can be measured and
calibrated by generating mock observations where a known lensing
signal has been introduced and comparing the resulting measurements
to the ground-truth. Producing these mock observations however
requires input galaxy images of higher resolution and S/N than
the simulated survey which typically implies extremely expensive
and scarce space-based observations. The goal of this work is to
train a deep generative model on already available Hubble Space
Telescope (HST) data which can then be used to sample new galaxy
images conditioned on parameters such as magnitude, size or redshift
and exhibiting complex morphologies. Such model can allow us to
inexpensively produce large set of realistic calibration images.

II. CONDITIONAL VARIATIONAL-AUTOENCODER

We implement a conditional generative model based on the
Variational Auto-Encoder (VAE) framework introduced in [4]. The
observations x are assumed to be generated by a random process
conditioned on some observed properties y and involving an un-
observed latent variable z according to some parametric distribu-
tion pθ(x,z|y) = pθ(x|z,y)pθ(z|y), where multi-layered neural
networks can be used to provide an expressive form of the prior
pθ(z|y) and likelihood pθ(x|z,y) distributions. For instance, in this

work we assume a Gaussian observation model so that pθ(x|z,y) =
N (µθ(z,y),Σ) where µθ is a deep convolutional neural network.
Assuming a given set of parameters θ, sampling from the model
simply involves sampling z from the prior, and then sample from
pθ(x|z,y). Fitting the model to the data is more complex however as
one needs to adjust its parameters θ as to maximize the marginal like-
lihood of the model pθ(x|y) =

∫
pθ(x|z,y)pθ(z|y)dz, which is in

practice intractable, as is the posterior density pθ(z|x,y). The VAE
approach is to introduce an additional recognition model qφ(z|x,y),
also encoded as a multi-layer neural network, to approximate the true
posterior pθ(z|x,y). The parameters θ and φ are then fitted jointly
by optimizing the following variational lower bound on the marginal
log likelihood of the model:

log pθ(x|y) ≥ −DKL(qφ(z|x,y) ‖ pθ(z|y))

+ Ez∼qφ(z|x,y) [log pθ(x|z,y)]

Contrary to the original likelihood, this variational bound becomes
easily tractable and efficient optimization of the large number of
parameters of the model is made possible by stochastic gradient
descent algorithms.

III. RESULTS ON COSMOS GALAXIES

We train our model on deep space-based observations of galaxy
images from the COSMOS survey [5], conditioning on redshift, size
or apparent magnitude. The quality of the model is assessed by
computing an extensive set of galaxy morphology statistics on the
generated images. Beyond simple second moment statistics such as
size and ellipticity, we apply more complex statistics specifically
designed to be sensitive to disturbed galaxy morphologies [6]. We
find excellent agreement between the morphologies of real and model
generated galaxies.
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Abstract—We briefly summarize the novel method presented in [1]
for estimating photometric redshifts when only unrepresentative spectro-
scopic training data are available.

Testing cosmological models with deep imaging surveys such as
the Dark Energy Survey and LSST requires accurate photometric
redshifts of millions of galaxies in extended redshift ranges. However,
very few spectroscopic observations of faint, high redshift galaxies
are available. As a result, photometric redshifts rise as a major source
of uncertainty in the exploitation of current and upcoming surveys.

Standard methods for obtaining point estimates and posterior distri-
butions for the redshift of a galaxy given noisy flux measurements are
based on template fitting or machine learning algorithms. Template
fitting involves forward modelling the spectral energy distribution
of galaxies and redshifting them. This is a well defined parameter
estimation problem, but current models and templates are insuffi-
cient to describe deep imaging surveys at the required statistical
accuracy. Furthermore, they fail to capture the complexity of real
flux measurements. Machine learning methods resolve this issue, but
require large representative training data, which are not available
for ongoing or upcoming galaxy surveys. We derive a conceptually
novel method which combines the advantages of template fitting
and machine learning and is capable of exploiting unrepresentative
training data.

The photometric flux in a band b of a galaxy (or a quasar) of rest
frame luminosity density Lν(λrest) (coined SED) at redshift z and
observed wavelength λ reads

Fb(z) =
1 + z

4πD2
L(z)

C−1
b

∫ ∞

0

Lν

(
λ

1 + z

)
Wb(λ) dλ/λ (1)

where DL is the luminosity distance and Cb denotes a normalization
constant which depends on the filter response Wb(λ) and on the
photometric system of interest.

As in template fitting methods, we introduce a variable t labelling
galaxy types or classes, described by a (continuous or discrete)
ensemble of SEDs Lν(λ, t), so that the the flux becomes Fb(z, t).

For a target galaxy of interest, the posterior distribution on its
redshift given a set of noisy photometric bands {F̂b} is

p(z|{F̂b}) ∝
∫

dt p({F̂b}|z, t) p(z, t) ≈
∑

i

wi p({Fb}|z, ti) (2)

The last equation assumes that we model a finite number of types
from a training set, with the weights capturing prior information.
Each type ti is constructed from a galaxy from a training set, which
consists of noisy photometric fluxes {F̂b}i and its redshift zi (e.g.,
spectroscopic). Hence, for each pair of target and training galaxies,
we aim to compute

p({F̂b}|z︸ ︷︷ ︸
target

, ti) = p({F̂b}|z, zi, {F̂b}i︸ ︷︷ ︸
training

) (3)

= p
(
{F̂b}|{Fb(z, ti)}

)
p
(
{Fb(z, ti)}|zi, {F̂b}i

)
.

The first term is the likelihood function, comparing the predicted
and measured fluxes, and is usually a multivariate Gaussian. For the
second term, we will use a Gaussian Process,

F (b, z) ∼ GP
(
µF (b, z), kF (b, b′, z, z′)

)
(4)

which we will fit to the fluxes of the training galaxy {F̂b}i at
its redshift zi. Thus, p

(
Fb(z, ti)|zi, {F̂b}i

)
becomes a standard

prediction for a Gaussian process with 2 input dimensions, redshift
and photometric band (described by filter responses).

We want the mean function µF and the kernel kF to capture the
expected correlations across redshift and bands resulting from the
known setup and physics of the problem: the bands have known
responses {Wb(λ)}, and galaxy SEDs are redshifted according to
Equation (1). We model the latent, underlying SED of each training
galaxy as a linear sum of templates T kν (λ) (e.g., taken from a standard
template fitting method) and residuals that take the form of a zero-
mean Gaussian Process with kernel k(λ, λ′). Therefore,

Lν(λ) =
∑

k

αkT
k
ν (λ)

︸ ︷︷ ︸
templates

+ Rν(λ)︸ ︷︷ ︸
residuals

∼ GP
(∑

k

αkT
k
ν (λ), k(λ, λ

′)
)

Since Equation (1) is a linear operation on Lν , the fluxes F (b, z)
are indeed a Gaussian Process. As described in [1], closed analytical
forms can be derived for the mean function µF and the kernel kF

for specific descriptions of the filter responses and the kernel k. In
this case, they capture correlations allowed by redshifted SEDs.

The method presented above delivers interpretable redshift poste-
rior distributions based on a data-driven model trained on measured
fluxes. It is conceptually different from existing machine learning and
template fitting photo-z methods but combines their main advantages.
Importantly, the method does not require the training set to be
representative of the target data, i.e., for them to have similar
redshift or flux distributions. Furthermore, the photometric bands
in the training and target set need not to be identical. Instead, the
training galaxy sample needs only to be as diverse as the target
galaxies in terms of SEDs; better redshift, band and flux coverage will
only improve the predictability of the model. This approach is the
first capable of exploiting heterogeneous training sets, consisting of
shallow and deep spectroscopic galaxy samples with different redshift
and wavelength coverages.

As detailed in [1], this novel approach benefits from various other
computational and methodological advantages, and performs well on
real data even in the presence of shallow training data.
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Abstract—Next-generation radio interferometers, such as the Square
Kilometre Array (SKA), will revolutionise our understanding of the
universe through their unprecedented sensitivity and resolution. How-
ever, standard methods in radio interferometry produce reconstructed
interferometric images that are limited in quality and they are not
scalable for big data. In this work we apply and evaluate alternative
interferometric reconstruction methods that make use of state-of-the-
art sparse image reconstruction algorithms motivated by compressive
sensing, which have been implemented in the PURIFY software package.
In particular, we implement and apply the proximal alternating direction
method of multipliers (P-ADMM) algorithm presented in a recent
article. We apply PURIFY to real interferometric observations. For all
observations PURIFY outperforms the standard CLEAN, where in some
cases PURIFY provides an improvement in dynamic range by over an
order of magnitude. The latest version of PURIFY, which includes the
developments presented in this work, is made publicly available.

I. INTRODUCTION

Radio interferometry allows imaging of the radio universe at
higher resolution and sensitivity than possible with a single radio
telescope. Image reconstruction methods are needed to reconstruct
the true sky brightness distribution from the raw data acquired by the
telescope, which amounts to solving an ill-posed inverse problem.
Traditional methods, which are mostly variations of the Högbom
CLEAN algorithm [1], do not exploit modern state-of-the-art image
reconstruction techniques.

Next-generation radio interferometers, such as the Square Kilo-
meter Array (SKA; [2]), must meet the challenge of processing and
imaging extremely large volumes of data. These experiments have
ambitious, high-profile science goals, including detecting the Epoch
of Re-ionisation (EoR) [3]. If these science goals are to be realised,
state of the art methods in image reconstruction are needed to process
big data and to reconstruct images with high fidelity.

In [5] we implement the P-ADMM algorithm developed by [4] in
the PURIFY software package, which has been entirely redesigned
and re-implemented in C++, and apply it to observational data from
the VLA and the ATCA. The previous version of PURIFY supported
only simple models of the measurement operator modelling the
telescope. PURIFY now supports a wider range of more accurate
convolutional interpolation kernels (for gridding and degridding). We
found that the Kaiser-Bessle kernel performs as well as the prolate
spheroidal wave funtions. Additionally, PURIFY provides higher
dynamic range images than CLEAN on real observations, sometimes
by an order of magnitude improvement. Figure 1 shows an example
of a CLEAN and PURIFY reconstruction of the radio galaxy 3C129.
The PURIFY reconstructions produce higher dynamic range without
the need for post processing to create a restored image.
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Fig. 1. The top and bottom show CLEAN and PURIFY reconstructions of
the radio galaxy 3C129 respectively. The PURIFY recosntruction shows less
contamination with higher dynamic range than the CLEAN reconstruction.
Additionally, the PURIFY reconstruction does not require post processing to
create a restored image. The details of these reconstructions can be found in
[5].
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Abstract—In the context of radio interferometry, the objective is
to find an estimate of an unknown image of the sky from degraded
observations, acquired through an antenna array. In the theoretical
case of a perfectly calibrated array, it has been shown that solving the
corresponding imaging problem by iterative algorithms based on convex
optimization and Compressive Sensing (CS) theory can be competitive
with classical algorithms such as CLEAN. However, in practice, antenna-
based gains are unknown and have to be modelled during the calibration
process. The latter aims to estimate the DIEs and DDEs related to each
antenna of the interferometer. In this work, we propose an alternated
minimization algorithm to estimate jointly the DIEs/DDEs and the image
while promoting its sparsity in a dictionary, leveraging the CS theory.

In radio interferometry, the imaging problem of finding an esti-
mation of an original unknown image x = (x(n))n ∈ RN

+ from
complex visibilities y ∈ CM can be formulated as an inverse
problem. More precisely, for an interferometer with na antennas, we
have M = na(na − 1)/2 measurements acquired in the Fourier
domain of the image of interest, from antenna pairs indexed by
(α, β) ∈ {1, . . . , na}2, with α < β. Therefore, each degraded
complex measurement y(α,β) ∈ C acquired by the antenna pair (α, β)
at the spatial frequency uα,β = uα − uβ can be modelled as

y(α,β) =

N/2−1∑

n=−N/2

dα(n)d∗
β(n)x(n)e−2iπ(uα−uβ) n

N + b(α,β), (1)

where dα = (dα(n))n ∈ CN represents a direction dependent effect
(DDE) related to antenna α, and b(α,β) is a realization of a Gaussian
additive noise. Note that direction independent effects (DIEs) can be
seen as a special case of DDEs where dα = δα1N , with δα ∈ C and
1N the unitary vector of dimension N .

When the antenna array is perfectly calibrated, i.e. when the DDEs
are known, new methods based on both convex optimization and CS
theory have been developed recently to find an estimation of x from
the observations (1) [1]. In particular, the estimated image can be
defined as a solution to:

minimize
x∈RN

+

1

2
‖GFx − y‖2 + η‖Ψ⊤x‖1, (2)

where η > 0, Ψ⊤ ∈ RD×N is a given dictionary, F ∈ CN×N

denotes the Fourier matrix, and G ∈ CM×N is a matrix containing
on each line the antenna-based gain for the pair (α, β). Then, each
line of G corresponds to the convolution of the Fourier transforms
d̂α and d̂β of dα and dβ respectively, centered at the frequency uα,β .

However, in practice, antenna-based gains (dα)α have to be
calibrated. The last years, several methods have been developed
to estimate DIEs and/or DDEs, when the image is assumed to be
known. In particular, in the StEFCal method [2] only DIEs are
considered and the complex visibilities are rewritten as a data matrix
Y ∈ Cna×na where, for every (α, β), Yα,β = y(α,β). Note that
due to the symmetry of measurements in (1) and reality of x, we
have Yβ,α = y∗

(α,β). The corresponding least squares minimization
problem can be recasted as follows:

minimize
D1∈Cna×N ,D2∈Cna×N

1

2
‖D1X̂D

⊤
2 − Y‖2, (3)

where D1 (resp. D2) is the matrix such that, each line α contains
d̂α (resp. d̂

∗
α) centered in uα (resp. −uα), and X̂ ∈ CN×N is the

matrix containing on each line/column a shifted version of the Fourier
transform of the image, to model the convolution operation. Note that
for DIEs, each vector d̂α has one non-zero value. Thus, to solve (3),
the StEFCal method needs to estimate only 2na values.

In this work, we propose a new method for the joint estimation
of the original image, and the DDEs when both are unknown, based
on a block-coordinate forward-backward algorithm [3]. It involves
alternating between the estimation of the image and the DDEs, which
are given as a solution to (2) and (3) respectively. In our approach,
we assume that the DDEs have a bounded support in the Fourier
domain, thus for the sparse matrices D1 and D2, we estimate only
the coefficient values within this support (of size 1 when DDEs
reduce to DIEs). Moreover, we consider constraints on the coefficient
amplitudes of the DDEs, assuming that the amplitude of the central
coefficient of d̂α is larger than the others. Finally, we make use of the
prior information on the bright sources of the image to be estimated.

We analyze the performance of our method on simulated sky
images of size 128 × 128, consisting of point sources, generated
randomly on three intensity levels (Fig.1). While the first level is
assumed to be known, the aim is to estimate the other two levels. We
consider na = 200 randomly distributed antennas, and d̂α of support
size 5×5. We performed simulations to reconstruct (i) the DIEs and
the image (a) by combining StEFCal with an imaging algorithm, (b)
using our method, and (ii) jointly the DDEs and the image with our
method. The results show that the second level given in Fig. 1(center)
is recovered only in case (ii). Finally, reconstructions have been
compared in terms of SNR, on an average of 10 simulations, varying
the random images, antennas distributions, DDE values and noise
realizations. The SNR of the prior image (Fig.1 (left)) is equal to
38.8 dB, while for the reconstructed images, we have SNR= 37.8 dB
for cases (i)(a-b) and SNR=53.2 dB for case (ii).
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Figure 1. Images, in log scale, corresponding to the first level with the known
bright sources x1 (left), and to the fainter sources belonging to the second x2
(center) and third x3 (right) levels. We have x = x1 + x2 + x3, with energy
of x1, x2 and x3 of the order of 1, 10−2 and 10−6, respectively.
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Abstract—We propose the comparison of two rotationally invariant
decomposition techniques on linear polarisation data: the spin-2 spherical
harmonic decomposition in two opposite parities, the E- and B-mode,
commonly used for the cosmic microwave background analysis, and
the multi-scale analysis of the gradient of linear polarisation, |rP|,
used for the turbulence analysis of polarised synchrotron emission. We
demonstrate that both decompositions have similar properties in the
image domain and the spatial-frequency domain.

I. INTRODUCTION

Surveys of the diffuse synchrotron emission are giving a new
view of the Galactic magnetic field structure and are revealing its
complexity at all spacial scales. However, to interpret the structures
in such polarised data, we need robust analysis techniques. In this
project, the spin-2 spherical harmonic decomposition and the gradient
of Stokes parameters Q and U are used as complementary tools in
order to develop a better understanding of the origin of energy sources
in the turbulent magnetic field, the origin of peculiar magnetic field
structures and their underlying physics.

(a)

(d)(b)

(c)

Fig. 1. (a) shows the |rP| for a subregion of the synchrotron S-PASS
survey [1] at its original resolution (⇠ 10 arcmin); (b) shows the |rP| at a
larger angular scale of ⇠ 161 arcmin; (c) presents the B-mode decomposition
overlaid with drapery structures showing the orientation of the magnetic
field; (d) shows the polarised intensity, |P| =

p
Q2 + U2, where intensity

fluctuations are not sensitive to the polarisation angle. Colour scales are linear,
where dark green is the minimum value and bright pink is the maximum value.

II. THE MULTI-SCALE ANALYSIS OF POLARISATION GRADIENT

The gradient of linear polarisation measures the rate at which the
polarisation vector traces out a trajectory in the Q–U plane as a
function of position on the sky:

|rP| =

s⇣
@Q

@x

⌘2

+
⇣
@U

@x

⌘2

+

✓
@Q

@y

◆2

+

✓
@U

@y

◆2

. (1)

For the multi-scale analysis, multiple continuous wavelet transforms
are calculated with different scales l on Q and U before the
calculation of |rP̃ (l,x)| in order to evaluate the scaling behaviour of
the interstellar magnetic field [2]. The continuous wavelet transform
is defined as

f̃(l,x) =

⇢
f̃1 = l�1

R
 1[l

�1(x0 � x)]f(x0)d2x0

f̃2 = l�1
R
 2[l

�1(x0 � x)]f(x0)d2x0.
(2)

The two wavelet functions are

 1(x, y) = @�(x, y)/@x,

 2(x, y) = @�(x, y)/@y,
(3)

where the function � is a Gaussian distribution and l is the wavelet
scaling factor. The multi-scale polarisation gradient is defined as

|rP̃ (l,x)| =

q
|Q̃1|2 + |Ũ1|2 + |Q̃2|2 + |Ũ2|2, (4)

III. THE SPIN-2 DECOMPOSITION

The E- and B-mode are scalar representations of the pseudo-
vectors Q and U . Their spherical harmonic coefficients are defined
as aE,`m = �(a+2,`m + a�2,`m)/2 and aB,`m = i(a+2,`m �
a�2,`m)/2, where a±2,`m are the spherical harmonic coefficients
of the spin-2 signal ±2(Q ± iU) [3]. The spin-2 decomposition of
the polarised synchrotron emission is a good strategy to highlight
coherent features where a particular alignment of the magnetic field
lines occurs (see Fig. 1).

IV. POWER SPECTRA

Fig. 2. The wavelet power spectra
of |rP̃ |, |rẼ| and |rB̃| for
the region presented in Fig. 1. It
can be noticed that |rP̃(l,x)| 'p

|rẼ(l,x)|2 + |rB̃(l,x)|2.
For this region, an excess in
B-mode is present at intermediate
scales and in E-mode at large
scales.

Wavelet coefficients can be used to measure the energy transfer from
large to smaller scales. The wavelet power spectrum is defined as
SX(l) = h|rX̃(l,x)|2ix, where X̃ can be P̃ , Ẽ or B̃. Wavelet
coefficients can later be used to locate, in the map, the features
responsible for the excess in E- or B-mode.

V. CONCLUSION

The two linear polarisation decomposition techniques can be used
as complementary tools to describe and quantify fluctuations in the
magneto-ionic medium (MIM). Local EB asymmetries correlated
with high intensity |rP̃| fluctuations can be inspected as local
sources of energy injection and/or perturbation in the MIM.
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Abstract—Spin-SILC is a component separation method that accu-
rately extracts the cosmic microwave background (CMB) polarisation E
and B modes from raw multi-frequency Stokes Q and U measurements of
the microwave sky. It is an internal linear combination (ILC) method that
uses spin wavelets to analyse the spin-2 polarisation signal P = Q+ iU .
The wavelets are additionally directional (non-axisymmetric). This allows
different morphologies of signals to be separated and used in the analysis.
The advantage of spin wavelets over standard scalar wavelets is to
simultaneously and self-consistently probe scales and directions in the
polarisation signal P and in the underlying E and B modes. Spin-SILC
can be combined with pseudo- and pure E-B spin wavelet estimators to
reliably extract the cosmological signal in the presence of complicated
sky cuts and noise. These proceedings review the work in [1], [2].

I. MOTIVATIONS

Cosmology can constrain the tensor-to-scalar ratio of primordial
fluctuations and hence the energy scale of inflationary expansion in
the early universe, as well as properties of neutrinos, in maps of the
polarisation of the CMB. These constraints are now limited by the
contamination from Galactic dust and synchrotron emission in those
maps. These polarised foreground signals demonstrate complex mor-
phology, with filamentary structures that trace the Galactic magnetic
field (see Fig. 1). They are poorly physically modelled. It is certain
that blind source separation methods will form an essential part of
disentangling the cosmological signal from polarised foregrounds. In
particular, ILC methods are the most blind, only assuming knowledge
of the CMB electromagnetic spectrum. ILC methods can be improved
by the choice of wavelet frame in which they are localised.

II. METHOD

In the Spin-SILC method, we use a frame of spin, directional,
scale-discretised wavelets [3]. When they are convolved with signals,
they localise structure by spatial scale. Our wavelets are additionally
directional, i.e. they are non-axisymmetric. This also localises by
orientation on the sphere; in particular, the filamentary structures of
polarised foregrounds can be separated. Moreover, our wavelets are
built on the basis of spin spherical harmonics. This allows the spin-2
signal P = Q+iU to be represented. E and B modes are respectively
reconstructed by inverse scalar (spin-0) wavelet transforms of the real
and imaginary parts of the spin wavelet coefficients. This is achieved
thanks to the particular construction of our wavelets.

Spin-SILC is an ILC method executed in spin, directional wavelet
space. The ILC reconstructs the CMB by co-adding multi-frequency
maps of the microwave sky. It calculates the frequency weights by
minimising the variance of the output map, while conserving the
CMB component by inputting its electromagnetic spectrum. Spin-
SILC localises these weights spatially, harmonically and directionally
in the wavelet space. In this way, we use all the information in the
polarisation signal P = Q+ iU .

Planck Collaboration: The Planck mission
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Fig. 23. Dust polarization amplitude map, P =
p

Q2 + U2, at 353 GHz, smoothed to an angular resolution of 100, produced by the
di↵use component separation process described in (Planck Collaboration X 2015) using Planck and WMAP data.

Fig. 24. All-sky view of the angle of polarization at 353 GHz, rotated by 90� to indicate the direction of the Galactic magnetic
field projected on the plane of the sky. The colours represent intensity, dominated at this frequency by thermal dust emission.
The “drapery” pattern was obtained by applying the line integral convolution (LIC; Cabral & Leedom 1993) using an IDL imple-
mentation provided by Diego Falceta-Goncalves (http://each.uspnet.usp.br/fgoncalves/pros/lic.pro). Where the field
varies significantly along the line of sight, the orientation pattern is irregular and di�cult to interpret.

33

Fig. 1. A line integral convolution map of the Planck polarisation channel at
353 GHz. This maps the polarisation pattern of Galactic dust emission. It is
dominated by complex filamentary structures. This figure is taken from [4].

III. TESTING AND FUTURE APPLICATIONS

Ref. [2] shows the results of testing Spin-SILC on full-mission
Planck FFP8 simulations of the CMB, foregrounds and noise. The
residuals between the reconstructed and input CMB are small in
magnitude demonstrating the efficacy of the method. We tested the
method on the biggest public dataset, Planck, where the polarisation
data is dominated by noise. This limits all component separation
methods. Nonetheless, with minimal tuning to the Planck dataset, our
method matches the performance of existing methods; and even has
smaller power spectrum residuals in higher signal-to-noise regimes
[1]. It will be interesting to see how Spin-SILC performs for the next
generation of high-sensitivity experiments, where, in particular, the
use of directionality can be further optimised.

Future CMB polarisation experiments will normally only map a
part of the sky. E-B mode decomposition is not well-defined in this
setting, where, in particular, E modes can erroneously be counted as
B. This E-B leakage problem can be resolved by combining Spin-
SILC with the spin wavelet pure mode estimators of [5].
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Abstract—When computing the likelihood for most large-
scale structure observations, a covariance matrix is needed
that describes the data errors and their correlations. Usu-
ally, this covariance matrix is not known a priori, and may be
estimated from simulations only. It thereby becomes a ran-
dom object with some intrinsic uncertainty itself. We show
how to infer parameters in the presence of such an estimated
covariance matrix, by marginalising over the unknown true
covariance matrix, conditioned on its estimated value. We
then quantify the loss of precision of parameter constraints
and describe how far away a given sky surveys are from the
ideal case of a known covariance matrix. We point out that
it is insufficient to estimate this loss by debiasing a Fisher
matrix as previously done, due to a fundamental inequality
that describes how biases arise in non-linear functions. We
apply our results to DES Science Verification weak lensing
data, detecting a 10% loss of information that increases
their credibility contours. No significant loss of information
is found for KiDS. For a Euclid-like survey, with about
10 nuisance parameters we find that 2900 simulations are
sufficient to limit the systematically lost information to 1%,
with an additional uncertainty of about 2%. Without any
nuisance parameters 1900 simulations are sufficient to only
lose 1% of information.

I. Introduction
Cosmological parameter inference frequently assumes a

Gaussian likelihood of the data, which is fully specified by a
mean, which depends on cosmological parameters, and a covari-
ance matrix which describes the measurement uncertainties.
Due to the complexity of cosmological observations, such a
covariance matrix is often not calculated from first principles.
Approximate solutions are sometimes used, but is still more
common to estimate the covariance matrix from numerical sim-
ulations of the experiment instead. Such simulations create N
random samples of synthetic data sets. An unbiased estimator
for the covariance matrix is then

S = 1
N − 1

N∑

i=1

(Xi − X̄)(Xi − X̄)T , (1)

where the Xi are simulated data sets, and X̄ = 1
N

∑N

i=1Xi is
the ensemble mean over all simulations. The decisive difference
between an approximately derived covariance matrix, and one
estimated via Eq. (1), is that although both may contain
systematic errors, the latter is additionally a function of the
random data sets Xi and therefore a random variable with
statistical uncertainties itself. Similarly, all functions of such
an estimated covariance matrix will again be random. This
impacts cosmological parameter inference in the following ways.

II. Deformation of the likelihood
The shape of the likelihood is being deformed. Instead of a

Gaussian likelihood with a true covariance matrix, the likeli-
hood of a sample-estimated covariance matrix can be shown

to be an adapted t-distribution. The proof utilizes that the
estimator Eq. (1) follows a Wishart distribution, centered on
the unknown true covariance matrix. This allows a construction
of a prior P for the unknown true covariance matrix Σ, over
which the originally Gaussian distribution of the data can then
be marginalized. In other words, the likelihood of observed
data Xo, given a covariance matrix S from N simulations,
P (Xo|µ, S, N), is the integral

P (Xo|µ, S, N) =
ˆ

dΣ G(Xo|µ, Σ)P (Σ|S, N)

= c̄p|S|−1/2

[
1 + (Xo−µ)T S−1(Xo−µ)

N−1

] N
2

,
(2)

where the last line is a modified t-distribution and c̄p is a
normalization constant.

III. Information loss
Information about the parameters in the mean µ is lost, due

to the uncertainty of the covariance matrix. This information
can be restored if the number of simulations is increased.
Accordingly, simulation numbers in the range of multiple ten-
thousands are currently often being called for in cosmological
discussions. These numbers were derived from Fisher-matrix
calculations of an approximate likelihood, before the more
accurate t-distribution discussed above became available. Go-
ing beyond the level of Fisher matrices, and utilizing the t-
distribution, these numbers can be shown to be lower than
expected so far, see e.g. the numbers here mentioned in the
abstract, or Fig. 6 of [1] for other surveys. In [1], it was
also found that although the information loss depends on the
number of simulations, it depends often more strongly on the
number of nuisance parameters. We therefore advocate reserv-
ing some computational time for running slow but sophisticated
simulations which help to understand better the role of nuisance
parameters, rather than running as many speedy simulations as
possible.
This workshop contribution is based on the results presented

in [1] and [2] .
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Abstract—The imaging capabilities of phased-array systems are gov-
erned by the properties of their array beamshape, directly linked to
the instrument impulse response. To ensure good spatial resolution,
beamshapes are designed with a very narrow main lobe, at the cost of a
complex sidelobe structure, potentially leading to severe image artifacts.
We propose the use of a new beamshape, called the Laplace beamshape,
built with the Flexibeam framework. This beamshape trades spatial
resolution for smoother sidelobes, resulting in an artifact-free image that
is much easier to process. This tradeoff can be optimally assessed through
a single parameter of the beamshape, allowing the analyst to perform a
multi-scale analysis.

EXTENDED ABSTRACT

Beamforming combines networks of antennas coherently so as
to achieve specific radiation patterns with desirable properties. For
simplicity, we restrict our attention to 2D-beamforming in all that
follows. Assuming hence an array of L antennas with positions
p1, . . . ,pL ∈ R2, the beamformed signal y(t) is obtained by
combining linearly the antenna signals xi(t) :

y(t) = w
H
x(t) =

L∑

i=1

w
∗
i xi(t), ∀t ∈ R,

where x(t) := [x1(t), · · · , xL(t)] and w := [w1, · · · , wL] ∈ CL.
By properly choosing the beamforming weights wi, it is possible to
steer the antenna array towards specific directions in the sky. This is
typically done via the popular matched beamforming method, which
sets the weights to wi(θ) =

(
e
−j 2π

λ
‖pi‖ cos(θ)

)
/
√
L, for a signal

of wavelength λ ∈ R and a direction θ ∈ [0, 2π]. By computing
the variance of the beamformed signal y(t), one can then obtain an
estimate of the sky intensity at this location

I(θ) = E[y(t)y(t)
∗
] = w

H
(θ)Σw(θ), (1)

where Σ := E[x(t)x
H

(t)]. Ranging across directions θ ∈ [0, 2π]
produces an estimate I(θ) of the sky intensity field. This procedure
is known as imaging by beamforming, or B-scan imaging, and
is commonly used in radio-astronomy, sonar/radar and ultrasound
imaging. The imaging capabilities of the instrument can then be
assessed through its point spread function, response of the tool to
an idealised point-source. We can show that this function is directly
proportional to the squared magnitude of the array far-field radiation
pattern, also called beamshape. Properties of this beamshape hence
completely determine the quality of the image in Eq. (1). For optimal
performance, two competing features must be optimised: the main
lobe width, which controls the achievable angular resolution, and the
sidelobes structure, which can translate into severe artifacts within
the image. As described in [1], matched beamforming is attempting
to achieve a beamshape as close as possible to a Dirac δ(θ− θ0). As
such, it typically performs quite well in terms of angular resolution,
with a very narrow main lobe around the direction of focus θ0, but
often demonstrates strong sidelobes (see Fig. 1a). These prominent
sidelobes are a consequence of the ill-defined nature of the Dirac
function, which makes it a very difficult object to approximate. To
avoid such complications, we hence propose to target a much better
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Fig. 1: Imaging with Laplace and matched beamforming.

behaved function, namely a circular Laplace function:

L(θ) = exp


−

√
(cos θ − cos θ0)

2
+ (sin θ − sin θ0)

2

Θ


 , (2)

where Θ > 0 controls the width of the main lobe. Being continuous
and quickly decaying from the direction of focus θ0, this function has
a well-behaved Fourier spectrum, and can hence be easily approxi-
mated with a finite number of complex plane-waves. Moreover, its
sharp central peak permits the very accurate estimation of source loca-
tions. To construct the Laplace beamshape, we used the very general
Flexibeam framework introduced in [1]. Beamforming weights were
obtained by sampling the so-called beamforming function, which, for
the circular Laplace function is given by:

wi = ω(pi) =
2πΘ

2

(
1 + 4π

2
Θ

2‖pi‖2λ−2
)3/2 e

−j 2π
λ
‖pi‖ cos(θ0).

As expected, the resulting beamshape exhibits much smoother side-
lobes (see Fig. 1a), with most of its energy contained in the main
lobe (∼86% against 74% for matched beamforming). As a result, the
image obtained with the Laplace beamshape appears much smoother,
facilitating enormously the recovery of the actual sources within the
field. Observe that this smoother behaviour was obtained at the cost of
lower angular resolution. This fundamental tradeoff can be formally
assessed by varying the parameter Θ, leading to a multi-scale analysis
of the image. The Laplace beamforming strategy above described
readily extends to 3D beamforming, and this will be the subject of a
future publication.

REFERENCES

[1] P. Hurley and M. Simeoni, “Flexibeam: analytic spatial filtering by
beamforming,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, March 2016.

28



Challenges of Extreme Dynamic Range Imaging: The Cygnus
Files

Oleg Smirnov∗ †
∗ Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa

† SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405, South Africa

Abstract—The new generation of radio interferometers, including the
SKA precursors (such as MeerKAT, LOFAR, ASKAP, the upgraded
JVLA, etc.) represent a large upgrade in terms of theoretical sensitivity
and/or extremely large fields of view. The SKA itself will push these trends
even further. Dynamic ranges (DR) in excess of 1 million should, in theory,
become routine. However, at present only a few carefully hand-crafted
data reductions have broken the million-DR barrier. I will present some
case studies to illustrate why high DR remains a problem, and discuss
the relevance of compressive sensing-based approaches in this context.

The first case study is a 20-hour observation of the field around the
source 3C147 between 1-2 GHz, using three configurations of the JVLA.
This exhibits a world-record DR of 8 million to one, however the field
is rather ”simple” in terms of its spatial structure, and is therefore
quite amenable to traditional deconvolution algorithms such as CLEAN.
It does, however, represent significant challenges in the calibration of
direction-dependent effects (DDEs), due to the rotating primary beam
pattern of the JVLA. The high DR means even subtle instrumental effects
are exacerbated, and must be carefully accounted for.

The second study is a 61-hour JVLA observation of the radio source
Cyg A, one of the most iconic sources in radio astronomy. It is an
morphologically complicated FR2-type radio galaxy, exhibiting a central
source, relativistic jets, extremely bright ”hotspots” where the jets create
a shock front as they hit the intergalactic medium, and extended ”lobes”
resulting from this interaction. Even without calibration effects, Cyg A
represents the ultimate imaging problem, and this observation is currently
limited by deconvolution algorithms rather than sensitivity. I will show
some results of applying CS-based approaches to this data, and discuss
the way forward.
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Abstract—Removing the aberrations introduced by the Point Spread
Function (PSF) is a fundamental aspect of astronomical image processing.
The presence of noise in observed images makes deconvolution a
nontrivial task that necessitates the use of regularisation. This task is
particularly difficult when the PSF varies spatially as is the case for
big surveys such as LSST or Euclid surveys. The first step is therefore
to estimate accurately the PSF field. In practice, isolated stars provide
a measurement of the PSF at a given location in the telescope field of
view. Thus we propose an algorithm to recover the PSF field, using the
measurements available at few these locations. This amounts to solving
an inverse problem that we regularize using both matrix factorization
and a sparsity. Then we show that, for these new surveys providing
images containing thousand of galaxies, the deconvolution regularisation
problem can be considered from a completely new perspective. In fact,
one can assume that galaxies belong to a low-rank dimensional space.
This work introduces the use of the low-rank matrix approximation
as a regularisation prior for galaxy image deconvolution and compares
its performance with a standard sparse regularisation technique. This
new approach leads to a natural way to handle a space variant PSF.
Deconvolution is performed using a Python code that implements a
primal-dual splitting algorithm. The data set considered is a sample
of 10 000 space-based galaxy images convolved with a known spatially
varying Euclid-like PSF and including various levels of Gaussian additive
noise. Performance is assessed by examining the deconvolved galaxy
image pixels and shapes. The results demonstrate that the low-rank
method performs as a well as sparsity for small samples of galaxies
and outperforms sparsity for larger samples.
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Abstract—Cosmologists mostly follow a well-established approach to
constraining physical models of the Universe and its contents with
astronomical data: Bayesian exploration of model parameter posterior
distributions using MCMC or similar approaches. Over the last decade
the community has gradually become aware of newer and more powerful
samplers than the traditional Metropolis-Hastings; I will present an
overview of the many samplers included in our CosmoSIS framework and
some notes on using different samplers effectively. I will also advocate a
particular modular approach to structuring theory calculations in cases
where model predictions themselves are difficult to make.

I. INTRODUCTION

In many branches of science the answer to the complaint “Statistics
is difficult!” is the retort “Just get more data!”. In cosmology, as
in many of the more interesting parts of science, getting new data
is very, very expensive, and we must use all the statistical tools at
our disposal to claw as much information from our existing data as
possible. As well as getting the best return on a given investment,
this lets us plan future experiments with more care.

Mathematically we cast this information extraction in a Bayesian
framework as parameter estimation. We construct a likelihood func-
tion that models the probability of the data that we observed, given
some theory and values of that theory’s parameters. We vary those
parameters using some exploration scheme, simple or complex, to
obtain a map of their probability.

II. SAMPLING METHODS

We will generically refer to these exploration schemes as “sampling
methods”, since many (though not all) of them provide representative
samples from the probability distribution whose histogram tends to
the underlying distribution.

In this talk we will survey a number of these methods that have
proved useful for general cosmological problems.We may crudely
classify them as follows.

Classic methods include Metropolis-Hastings, in which a single
serial chain uses likelihood ratios to decide whether to take some
proposed jump, and Importance sampling, in which a previously
obtained distribution is re-weighted to match a new one.

Grid-based methods explore a regular grid in parameter space,
either naively, or more cleverly, as in the Snake sampler.

Ensemble methods, like Emcee, PMC, Kombine, and Multinest,
use a large number of points that swarm across the space with some
collective behavior.

A host of miscellaneously useful methods can also be usefully
incorporated in the same framework, such as maximum likelihood
methods, which climb to the peak of the likelihood, and the Fisher
matrix, which assumes a known maximum likelihood and approxi-
mates the whole system as Gaussian.

I will briefly discuss our work evaluating these sampling methods,
including how to choose one and configure it for a given problem

III. A TYPICAL LSST PARAMETER PROBLEM

A typical problem of the type LSST will face in cosmological
parameter estimation is to constrain cosmological parameters given
a measurement of the correlations between shape measurements in

two-dimensional radial slices of a sample of galaxies. In the ideal
case for such a problem, to calculate the theoretical predictions of a
theory, we must: calculate the background evolution of the universe;
calculate the 3D spectrum of density fluctuations in the cosmic matter
distribution; integrate this radially to obtain 2D spectra; and Hankel
transform the spectrum into a correlation function.

In practice this relatively simple sequence becomes more and more
complex as we introduce the systematic errors we will find in real
data like that from LSST. We must account for redshift errors, which
skew the kernel of our radial integration; galaxy shape measurement
errors, which add multiplicative and additive distortions to our final
signal; and theoretical uncertainties like intrinsic correlations in
galaxy shapes, and the behavior of matter on small scales.

It is occasionally claimed that there is no general way to deal with
systematic errors in data. This is false. The general methodology
is: study the error; model it; parametrize it; and sample over its
parameters at the same time as those of scientific interest.

This is the approach we I will advocate for in this talk.

IV. STRUCTURING THEORY

Coupled to a generic set of sampling methods it has proved
immensely useful to build a general framework for making theo-
retical predictions from cosmological models. I will advocate for the
structure presented in our code COSMOSIS: a modular framework
in which steps in cosmological calculations are split into their con-
stituents, each one encoded as a shared library or python framework,
and connected together via a strict data passing system that prevents
tight coupling.

This framework provides natural splits where one can model sys-
tematic errors, eases debugging, comparison, and data serialization,
and can help with sharing and verifying codes.

Our COSMOSIS code guides the scientist towards this way of
thinking about physical problems and thus improves the quality of
parameter estimation results.

V. WRITING SAMPLERS

I will also discuss what those in the statistical community can
do to make their sampling or optimization methods more useful to
practicing scientists.

The theoretical predictions of cosmological theories rarely if ever
take simple analytic forms; they are rather complicated numerical
computations. This severely limits the utility of whole classes of
method which rely on analytic derivatives of theory observables or
similar.

Bespoke algorithms that need a great deal of fine tuning are also
unlikely to be widely useful except in special circumstances - minimal
human supervision is a major plus for a method.

Finally, we are in the era of parallel computing - a method that
can make best use of large numbers of parallel cores is hugely more
useful than a serial one like Metropolis-Hastings.
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Fig. 2. Comparison of typical outputs from classical histology (left) and 
virtual histology using diffusion-MRI microstructure imaging (right) in 
two example applications: white matter imaging in the brain (top – from 
[1]) on estimating axonal geometry and the second on cancer imaging in 
the prostate i.e. cell density and organisation (bottom – from [2]). 

 

Fig. 1. ActiveAx [1] uses a simple geometric model (a), consisting of 
parallel non-abutting impermeable cylinders, of white matter 
microstructure (b). It fits the model in each voxel of a set of images (c) 
with varying diffusion contrast to recover estimates of cylinder size and 
packing density, which provide maps of indices of axon diameter (d) and 
axon density (e), respectively. 
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Abstract— My talk will give an overview of 
microstructure imaging with diffusion MRI. The 
microstructure-imaging paradigm aims to estimate and map 
microscopic properties of biological tissue using a model 
that links those properties to the voxel scale MR signal. I’ll 
go through the basic principles, key challenges, summarise 
the state of the art, and highlight current hot topics and 
future directions. 

 

Microstructure imaging ultimately aims to achieve virtual 
histology: estimating and mapping histological features of 
tissue using non-invasive imaging techniques, such as MRI. 
This virtual histology has several advantages over classical 
histology: i) it is non-invasive and avoids, for example, biopsy 
and its potential side-effects; ii) it views intact in-situ tissue 
avoiding disruptions that arise from tissue extraction and 
preparation; iii) it is non-destructive so enables repeat 
measurements for monitoring; iv) it provides a wide field of 
view, typically showing a whole organ or body, rather than the 
small samples typically obtained by biopsy or slices of fixated 
brain tissue for traditional histology. Figure 1 compares typical 
images from classical histology and microstructure imaging 
using diffusion MRI in two different scenarios. The clear 
advantage of classical histology is its level of anatomical detail; 
its submicron image resolution provides vivid insight into the 
cellular architecture of tissue, whereas microstructure imaging 

provides only statistical descriptions of the tissue over the 
extent of millimetre-sized image voxels. In some applications, 
the visualisation of individual cells is important; for example, a 
cancer histopathologist may need to identify the presence of 
one in a million mitotic cells. However, many histopathological 
tasks seek less specific information that reflects broad statistical 
changes over a wide extent of tissue: e.g. different density, 
shape, and configuration of cells discriminate different grades 
of prostate cancer. In such applications, precise detail is less 
important and the benefits of microstructure imaging can 
significantly outweigh those of traditional histology. 

Microstructure imaging relies on a model that relates 
microscopic features of tissue architecture to MR signals. In 
general, the approach acquires a set of images with different 
sensitivities and fits a model in each voxel to the set of signals 
obtained from the corresponding voxel in each image. The 
process yields a set of model parameters in each image voxel, 
which constitute parameter maps of microscopic tissue features. 
Figure 2 illustrates with an example from diffusion MRI. 

Diffusion MRI is a key modality for microstructure 
imaging, because of its unique sensitivity to cellular 
architecture. The technique sensitizes the MR signal to the 
dispersion of signal-bearing particles, typically water 
molecules, over diffusion times in the order of 1-100 
milliseconds. The mean free-path over this time at room or 
body temperature is in the micrometer range, i.e. the cellular 
scale, so that the cellular architecture of the tissue strongly 
influences the dispersion pattern of the molecules. Thus 
diffusion MR measurements support inferences on tissue 
microstructure.  
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Abstract—We propose a multi-shell sampling grid and develop cor-
responding transforms for the accurate reconstruction of the diffusion
signal in diffusion MRI by expansion in the spherical polar Fourier (SPF)
basis. The transform is exact in the radial direction and accurate, on the
order of machine precision, in the angular direction. The sampling scheme
uses an optimal number of samples equal to the degrees of freedom of
the diffusion signal in the SPF domain.

I. INTRODUCTION

The diffusion signal in diffusion MRI can be reconstructed from a
finite number of measurements in q-space, where q is the diffusion
wavevector, from which the brain’s connectivity and microstructure
properties can be determined. In diffusion MRI, the number of
measurements that can be acquired is highly restricted due to the need
for scan times to be practical in a clinical setting. For this reason,
multi-shell sampling schemes, where samples are collected on mul-
tiple concentric spheres with different q-space radii, are commonly
used rather than large Cartesian sampling grids. Existing multi-shell
sampling schemes require more than the optimal number of samples,
defined as the degrees of freedom in the basis used to reconstruct
the diffusion signal, in order to allow for the accurate reconstruction
of the diffusion signal and use least-squares to calculate coefficients,
which is computationally intensive (e.g. [1]).

The spherical polar Fourier (SPF) basis [1] is a 3D complete
orthonormal basis commonly used for reconstructing the diffusion
signal. The normalised MR signal attenuation, E(q) can be expanded
in the SPF basis, as

E(q) =

N−1∑

n=0

L−1∑

`=0

`∑

m=−`
En`mRn(q)Y m` (q̂), (1)

where q̂ = q
|q| , q = |q|, Y m` (q̂) are spherical harmonic coefficients

of degree ` and order m, and the expansion coefficients are given by

En`m = 〈E(q), Rn(q)Y m` (q̂)〉. (2)

The radial functions are Gaussian-Laguerre polynomials Rn with1

Rn(q) =

[
2

ζ0.5
n!

Γ(n+ 1.5)

]0.5
exp

(
−q2
2ζ

)
L1/2
n

(
q2

ζ

)
, (3)

where ζ denotes the scale factor and L1/2
n are the n-th generalised

Laguerre polynomials of order half. The expansion Eq. (1) assumes
that E(q) is band-limited at radial order N and angular order L.

II. MULTI-SHELL SAMPLING SCHEME AND SPF TRANSFORM

The 3D transform for calculating the diffusion signal coefficient
(Eq.2) can be separated into transforms in the radial and angular
directions due to the separability of the SPF basis. For the radial
transformation, Gauss-Laguerre quadrature can be used, where N
sampling nodes is sufficient for exact quadrature. The N shells of

1We use a slightly different constant to [1] so that Rn are orthonormal
with respect to a radial inner product.

(a) (b)
Fig. 1: (a) North pole view and (b) South pole view.

our proposed multi-shell sampling scheme are placed at qi =
√
ζxi

where xi are the roots of the N -th generalised Laguerre polynomial
of order a half. We determine the corresponding weights to be

wi =
0.5ζ0.5Γ(N + 1.5)xie

xi

N !(N + 1)2[L0.5
N+1(xi)]2

. (4)

The number of shells required for accurate reconstruction was recom-
mended as N = 4 in [2]. We set the scaling factor ζ so that shells
are located at b-values within an interval of interest. In this work,
we use a maximum b-value of 8000 s/mm2, resulting in shells at
b = 411.3, 1694.4, 4036.3 and 8000 s/mm2.

For sampling within each shell, we use the recently proposed
single-shell sampling scheme [3] which allows accurate reconstruc-
tion on the order of machine precision accuracy, has an efficient
forward and inverse spherical harmonic transforms, and uses an
optimal number of samples for the band-limited diffusion signal on
the sphere, L(L + 1)/2. The spherical harmonic band-limit, and
therefore the number of samples within each shell, is determined
using [4], where the authors determined the spherical harmonic band-
limit L required to accurately reconstruct the diffusion signal at
different b-values, the shells have L = 3, 5, 9 and 11 respectively.
The proposed sampling scheme has a total of 132 samples. Fig. 1
shows the sampling scheme projected onto a single sphere, samples
are shown in black, green, red and blue for each shell respectively.
Locations where antipodal symmetry is used to infer the value of the
signal are lighter in color. REFERENCES
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Abstract—We present an overview and recent developments of convex
regularization functionals involving higher-order derivatives and their
applications in imaging. In particular, dedicated functionals for the
reconstruction of multichannel images and spatio-temporal data as well
as curvature-based regularization are discussed.

I. INTRODUCTION

In variational imaging, smoothing-based image priors that lead
to convex functionals are widely used due to their well-studied
structure, well-posedness properties, resolution-independence and ef-
ficient numerical realizability. While functionals depending on first-
order derivatives like the total variation (TV) are a popular choice,
reconstruction quality can significantly benefit from higher-order
smoothness information obtained with measure-based functionals.

II. TOTAL GENERALIZED VARIATION AND EXTENSIONS

In order to allow for jump discontinuities (as TV) as well as
for incorporation of higher-order derivative information, the total
generalized variation (TGV) has been proposed [1]. Its second-order
version may also be written as [2]

TGV2
α(u) = min

w∈BD(Ω)
α1‖∇u− w‖M + α0‖Ew‖M

where ‖·‖M denotes the Radon norm and E is the symmetrized
derivative. This can be interpreted as an optimal balancing between
the first and second derivative of u where an optimal w represents
the smooth part of the gradient ∇u. This way, both edge information
as well as smooth regions can accurately be recovered, see Figure 1.

For the regularization of multichannel images, we have additional
choices regarding the respective matrix and tensor norms for the
(higher-order) derivatives [3]. This additional degree of freedom can
be used to couple edge and smoothness information. In particular,
an utilization of the nuclear norm for the derivative may enforce
aligned edges (which correspond to rank-1 gradients). A second-order
multichannel total generalized variation then reads as

TGV2
α(u) = min

w∈BD(Ω)k
α1‖|∇u− w|nucl‖M + α0‖|Ew|frob‖M

where |·|nucl and |·|frob denote the nuclear matrix norm and Frobenius
tensor norm, respectively. This concept was successfully applied for
joint MR-PET reconstruction, see Figure 2(a).

These notions can also be extended to dynamic data, where one has
to balance spatial and temporal derivatives by a weighting factor. This
factor then determines the temporal scale of regularization. Often,
however, dynamic data admits several temporal scales. In order to

noisy image ‖∆·‖M TV �β TV2 TGV2
α

Fig. 1. Denoising with some second-order measure-based penalties.

CGSENSE & MLEM reconstruction

Nuclear/Frobenius-TGV reconstruction
(a) Joint MR-PET reconstruction

Direct reconstruction

ICTGV reconstruction
(b) Cardiac MR imaging

Fig. 2. Application of TGV and ICTGV to biomedical imaging problems.

account for the latter, an infimal convolution of functionals with
different spatio-temporal weighting can be used:

ICTGV2
α,β1,β2

(u) = inf
u=u1+u2

TGV2
α,β1

(u1) + TGV2
α,β2

(u2),

where β1, β2 > 0 represent different spatio-temporal weighting
parameters. Such an approach is, for instance, beneficial for cardiac
MR imaging, see Figure 2(b).

III. CURVATURE-BASED REGULARIZATION

Besides incorporating higher-order smoothness information from
the function-representation of an image, it is also possible to penalize
higher-order features of their level sets. In order to obtain a convex
framework, the gradient of an 2D-image can be lifted. This allows to
introduce convex functionals that respect curvature information, for
instance, by counting vertices or measuring the total curvature [4]:

TVXα,β
q (u) = inf

µ∈M(Ω×S1)
(u,µ)∈M∇

α‖∇u‖M + β sup
ψ∈C∞c (Ω×S1)
ψ∈Mq(Ω)

〈∇ϑµ, ψ〉

where M∇ corresponds to the lifting, Mq(Ω), q ∈ {0, 1} is a predual
norm ball and ∇ϑ realizes the tangential derivative. Employing such
regularization functionals then might be advantageous for recovering
thin, elongated structures, see Figure 3.
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Fig. 3. Segmentation with length- vs. curvature-based regularization.
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Abstract— To explore the brain’s network dynamics at the 
macroscale, it is useful to go beyond the microscopic activity of 
individual neurons and consider instead the behavior of 
mesoscopic ensembles of neurons when coupled together in the 
neuroanatomical network of white matter fibers. In whole-brain 
computational models, each brain area is represented by a 
neural-mass model with oscillatory activity and receives input 
from anatomically connected areas. Simulations show that their 
interaction at the whole-brain level gives rise to slow fluctuations 
(<0.1Hz) similar to the ones observed in brain activity during rest. 
In this work, we provide an overview of the current mechanisms 
linking the fast local oscillatory activity (8-100Hz) and global slow 
fluctuations (<0.1Hz) observed resting-state activity. 

I. INTRODUCTION 
Understanding the genesis of spatially and temporally 
structured brain rhythms is a crucial matter in neuroscience [1]. 
In vitro studies have shown that the cortical tissue is excitable, 
displaying the emergence of coherent oscillations under 
specific medium conditions while the single neurons fire only 
intermittently [2]. Detailed computational models of spiking 
neurons have helped to investigate how neurons (and 
interneurons) connected in specific network topologies can 
generate firing patterns replicating electrophysiological 
measurements [3]. The frequency of such oscillations is 
determined by time constants such as the feedback delay, the 
synaptic time constants and the axonal transmission times. 
Furthermore, the ratio of time scales of excitatory and 
inhibitory currents and the balance between excitation and 
inhibition also affect the properties of the rhythms. 
 

To investigate how these locally generated oscillations 
interact at the macroscopic level of the whole brain network, it 
is useful to use neural-mass models in order to reduce the 
complexity of spiking neuron models to a small set of 
differential equations describing the population activity [4-7]. 
This approach is motivated by neuroimaging observations 
showing that neurons within a densely connected neural 
ensemble tend to share the same physiological properties, 
exhibit dense reciprocal interconnectivity and show strong 
dynamical correlations. Each neural-mass receives input from 
anatomically connected areas. A realistic connectivity matrix 
can be non-invasively obtained from tractography algorithms 
applied to Diffusion-MRI (Figure 1) and subsequently down-
sampled into a reduced number of brain areas using a 
parcellation template. 

Over the last decade, a number of computational studies [4-
8] have used whole-brain network models of coupled neural 
masses to investigate the relationship between the fast dynamics 

generated locally at the level of brain areas and the ultra-slow 
fluctuations of BOLD signal that appear correlated across 
distant brain areas forming functionally relevant resting-state 
networks. More recently, these BOLD signal correlations have 
been associated to correlated fluctuations in the power of fast 
oscillatory activity, as obtained with LFP, EEG or MEG. 

Results show that resting-state BOLD correlations emerge 
spontaneously from the interaction between brain areas in the 
neuroanatomical network. However, the biophysical 
mechanisms linking the fast oscillatory activity with the slow 
network dynamics remain under debate [7-8]. 

 

Fig. 1. Whole-brain anatomical network model obtained from DTI-based 
tractography. Adapted from [8}. 
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Abstract—In this work, we review a new wavelet-based method
[1] proposed to segment images on the sphere, accounting for the
underlying geometry of spherical data. The method is compatible with
any arbitrary type of wavelet frame defined on the sphere, such
as axisymmetric wavelets, directional wavelets, curvelets, and hybrid
wavelet constructions. Numerical experiments on projected spherical
retina images demonstrate the superior performance of the proposed
method.

I. INTRODUCTION

Segmentation is the process of identifying object outlines within
images. There are a number of efficient algorithms for segmentation
in Euclidean space that depend on the variational approach and
partial differential equation modelling, e.g. [2], [3]. Wavelets have
been used successfully in various problems in image processing,
including segmentation, inpainting, noise removal, and many others.
Wavelets on the sphere have been developed to solve such problems
for data defined on the sphere, which arise in numerous fields such
as cosmology and geophysics, e.g. [4], [5], [6].

We review the wavelet-based spherical image segmentation method
proposed in [1], which is a direct extension of the tight-frame based
segmentation method [3] used to automatically identify tube-like
structures such as blood vessels in medical imaging. It is compatible
with any arbitrary type of wavelet frame defined on the sphere. Such
an approach allows the desirable properties of wavelets to be naturally
inherited in the segmentation process. Moreover, the algorithm is
efficient with convergence usually within a few iterations.

The segmentation method devised in [1] provides, for the first time,
a segmentation framework for spherical images. The framework used
an iterative strategy with the flexibility to tailor the iterative procedure
according to data types and features.

II. ALGORITHM

Let f ∈ L2(S2) be the given image defined on the sphere S2.
Without loss of generality, we assume f in [0, 1]. Let A and A-1 be
the forward and backward spherical wavelet transforms, respectively.

The idea behind the method is to detect the candidates of possible
pixels on (near) the boundary first, then gradually purify these
boundary-like pixels via an iterative procedure until all pixels on
the sphere are classified as inside or outside of a boundary. When
a binary result is obtained the algorithm stops. In the following, we
discuss each of the iterative steps of the method in more detail.

Preprocessing. Suppress the noise in f by using one iteration step
of the tight-frame algorithm in [3], then represent it by f̄ .

Initialisation. Let Λ(0) be the initial set of potential boundary
pixels, which is identified by using the gradient of f̄ , i.e. pixels with
gradient larger than a given threshold ε are in Λ(0).

The i-th iteration of our algorithm can be described by: 1) find
a range [ai, bi] from image f (i) and threshold it into three parts
– those below, inside and above the range (represented by f (i+ 1

2
)),

and obtain Λ(i+1) which contains fewer potential boundary pixels;
2) compute a new image using the following formula

f (i+1) ≡ (I − P(i+1))f (i+ 1
2
) + P(i+1)A-1Tλ(Af (i+ 1

2
)),

where Tλ represents the soft-thresholding with threshold λ; I is the
identity operator and P(i+1) is the operator generated from Λ(i+1).

Stopping criterion. As soon as all the pixels of f (i+ 1
2
) are either

of value 0 or 1, or equivalently when Λ(i) = ∅, the iteration is
terminated, then all the pixels with value 1 constitute the objects of
interest otherwise they are considered as background.

III. EXPERIMENTAL RESULTS

Experimental results of a spherical retina image are given in Fig. 1,
to demonstrate the superiority of the method and show its capability
of segmenting spherical images, including those with prominent
directional features. The test image is generated by projecting a 2D
retina image in the DRIVE data-set1 on the sphere.

The K-means method is applied to data on the sphere according
to the pixels intensities for comparison purpose, using the MATLAB

built-in function kmeans. The result by the method [1] equipping
hybrid wavelets constructed by combining the directional wavelets
and curvelets is obtained with ε = 0.04. Code to compute these
wavelet transforms is public and available in the existing S2LET2

package.

Fig. 1. Results of spherical retina image. First row from left to right gives
the spherical retina image, the segmentation result of K-means method and
that of the method in [1] (takes 8 iterations); with the zoomed-in details of
the red rectangle areas on them shown in the second row, respectively.
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Abstract—In ultrasound (US) imaging, beamforming is usually sepa-
rated from the deconvolution or some other post-processing techniques.
The former processes raw data to build radio-frequency (RF) images
while the latter restore high-resolution images, denoted as tissue reflec-
tivity function (TRF), from RF images. This work is the very first trial to
perform deconvolution directly with raw data, bridging the gap between
beamforming and deconvolution, and thus reducing the estimation errors
from two separate steps. The proposed approach retrieves both high
quality RF and TRF images and exhibits better RF image quality than
a classical beamforming approach.

The deconvolution problem for ultrasound (US) imaging has been
intensively considered to enhance the image quality after Jensen
et al. [1] introduced a convolution model from the standard wave
equation. According to such a model, the radio-frequency (RF) image,
obtained from the raw data after the beamforming operation, can be
represented as a convolution between the point spread function (PSF)
of the US system and the tissue reflectivity function (TRF). The TRF
image can thus be recovered from the RF image using deconvolution
algorithms. The quality of the RF image, which has an impact on the
recovered TRF, is linked to the beamforming technique. In classical
US systems, the delay-and-sum (DAS) method is used which results
in a relatively poor quality RF image.

Recently, we have expressed a linear forward model which relates
the raw data to the RF image [2]. Formally, if we denote by y ∈ RM
the raw data and by r ∈ RN the RF image, we have formulated a
linear operator G ∈ RN×M such that y = Gr + n [2].

In this study, we propose a new method, recalled as beamforming-
deconvolution framework, which bridges the gap between the two
techniques described above and aims at obtaining both higher qual-
ity RF and TRF images. The direct model of the beamforming-
deconvolution framework is expressed as y = GHx + n, where
x ∈ RN stands for the TRF, H ∈ RN×N represents the PSF and
n ∈ RM is the additive Gaussian noise.

Instead of estimating the RF image and TRF sequentially, we
hereby propose to recover the TRF and RF images altogether. With
the US adapted assumption that TRF is general Gaussian Distributed,
the corresponding `p - minimization (p > 0) problem is formulated
as:

min
x∈RN

α ‖ x ‖pp + ‖ y − GHx ‖22 (1)

where α is a hyperparameter. In order to avoid the computation of the
inverse of G, the forward-backward splitting (FBS) algorithm with a
proximal operator of the `p-norm is adopted to solve Problem (1).

We provide a basic comparison between the proposed algorithm
and a sequential method, which performs beamforming and decon-
volution sequentially and separately. The method of DAS is used
for beamforming and the deconvolution step was processed with
FBS by minimizing α ‖ x ‖pp + ‖ r − Hx ‖22. As a preliminary
investigation, we should note that the PSF for both methods was
estimated in a preprocessing step. A 128-elements linear probe, with
a central frequency of 5 MHz, has been simulated with Field II,

a state-of-the art ultrasound simulator. The anechoic cyst shown in
figure below is composed of a 8-mm diameter anechoic occlusion at
4 cm depth embedded in a medium with high density of scatterers
(30 per resolution cell) and insonified with one plane wave (PW) with
normal incidence. No apodization is used neither at transmission nor
at reception.

(a)                                                    (b)

(c)                                                              (d)

Figure 1 Comparison with a sequential method. (a) RF image with DAS
(CNR=7.50 dB), (b) TRF image with sequential method (CNR=3.93 dB),
(c) RF image with proposed method (CNR=7.71 dB), (d) TRF image with
proposed method (CNR = 5.01 dB).

Figure 1 confirm that the proposed method is capable of recovering
both high quality RF and TRF. The door from raw data to TRF is
thus opened, bringing us many possibilities in the near future. On
the one hand, we can perform some other post-processing techniques
such as super-resolution directly to raw data. On the other hand, the
compressive sampling with raw data can be introduced by including
an undersampling operator and the reconstruction of enhanced US
image from compressed measurements will thus become true [3, 4].
Our future work will also include the consideration of blind decon-
volution techniques with variant PSFs.
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Rapid Motion-Robust MRI
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Abstract—The lengthy scan durations required for magnetic resonance
imaging (MRI) limit its effectiveness for characterizing rapid physio-
logical dynamics and hinder its reliability due to sensitivity to image
artifacts from motion. However, the scan duration must not only be
shortened, but the sensitivity of the modality to motion must also be
addressed. Speed and motion-robustness must be jointly considered for
more effective solutions.

I. INTRODUCTION

MRI is a powerful imaging modality with the flexibility to generate
different soft-tissue contrasts. Unfortunately, MRI data acquisition is
inherently slow: data are acquired point-by-point in the frequency
domain. Moreover, signal decay requires data to be acquired over
many time segments. The quality and reliability of MRI are hindered
by lengthy scan durations (0.5–5 min for volumetric acquisitions). In
order to truly design MRI to be both (a) rapid and (b) motion-robust,
these two features must be jointly considered as they are synergistic
in nature. A more rapid MRI scan will decrease the amount of motion
corruption. Conversely, improving motion robustness will improve the
performance of model-based reconstruction techniques that enable
significant sub-sampling. The purpose of this paper is to discuss four
areas of recent developments that are building blocks to achieve rapid
and motion-robust MRI.

II. DATA ACQUISITION

The first component in rapid motion-robust MRI scans is the
data acquisition process. Advanced techniques using model-based
reconstruction, such as compressed-sensing, rely on pseudo-random
variable-density sub-sampling to structure aliasing artifacts to appear
noise-like [1]. To enable both advanced reconstruction techniques and
motion robustness, an appealing strategy is to extend the compressed-
sensing framework to include time. Popular approaches use the
golden-ratio ordering [2] and its variants to pseudo-randomly sample
data in the spatial-frequency-domain and in time.

III. MOTION-ARTIFACT SUPPRESSION

High sub-sampling factors have been enabled by model-based
reconstruction techniques that exploit the localized sensitivity-profiles
of each element in a coil-receiver array [3], [4]. Additionally, image
priors such as sparsity in another transform domain can be incor-
porated using compressed sensing [5]. By reducing the amount of
sub-sampling, these same algorithms can be leveraged to recover
corrupted data samples. This framework can be relaxed through
weighting (or “soft-gating”) the data based on data corruption rather
than binary data rejection [6]. These approaches suppress image
artifacts from motion but require enough additional “motion-free”
samples to be acquired.

IV. MOTION CORRECTION

With significant sub-sampling, the few data points acquired must
be sufficiently accurate to enable proper estimation of the missing
or overly-corrupt data samples. By correcting for motion-corruption,
more data samples can be used by the reconstruction methods [7],
[8]. Advanced algorithms for modelling non-rigid image warping
from motion can be used. Alternatively, complex motions can be

approximated with simpler localized linear translations. This approx-
imation simplifies the correction algorithm and reduces the required
computation.

V. MOTION-RESOLVED RECONSTRUCTION

Motion correction increases the number of accurate data sam-
ples used by the model-based reconstruction. Unfortunately, patient
motion not only results in misaligned data samples, but will also
result in other types of data corruption (e.g., field inhomogeneity
variations and signal magnitude fluctuations). It has been recently
proposed to extend the reconstruction framework to include motion
as an additional dimension [9]. With the latest developments in image
reconstruction, multiple motion dimensions, such as respiratory and
temporal dynamics, can be included while maintaining feasible scan
durations (5–10 min). This ultra-high-dimensional imaging approach
increases robustness to motion and enables more clinically relevant
information to be extracted from a single dataset.

VI. CONCLUSION

Developments in data acquisition and model-based reconstruc-
tion have significantly improved MRI. The dependency of the dis-
cussed building blocks (i.e., data acquisition enables effective motion
suppression) reflects the synergistic nature of speed and motion-
robustness. Future work should entail focusing on these different
aspects simultaneously for greater advancements.
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Abstract—Functional MRI (FMRI) is a non-invasive imaging technol-
ogy that is sensitive to brain activity, although encoding an entire brain at
high resolution can take seconds. Recently, we developed a novel approach
to characterising brain function by using the existence of low-rank brain
network structure to constrain highly under-sampled reconstructions. We
improve upon this work by incorporating constraints derived from simul-
taneous electroencephalography (EEG) measurements. We demonstrate
for the first time that EEG-derived constraints can improve the functional
sensitivity of rank-constrained FMRI data reconstruction.

In functional magnetic resonance imaging (FMRI), brain activity is
characterised through fluctuating blood oxygen levels, which generate
local magnetic field susceptibility differences that affect MR signal
contrast. These blood oxygenation changes have a well established
link to neuronal activity and metabolic demand, so while the FMRI
measurements are indirect, they are robust indicators of underlying
brain function. Conventionally, FMRI data are acquired across the
whole brain in seconds, which can limit achievable spatial and
temporal resolution, and restrict data degrees of freedom.

Recently, we developed a new strategy for accelerating FMRI
data acquisition by leveraging information about how the brain is
intrinsically organised[1], [2]. Specifically, we exploited the corre-
spondence between robust low-dimensional brain network models
that are ubiquitous in brain functional analysis[3], and low-rank
matrix completion or recovery approaches[4].

However, relying primarily on the low-rank constraint can result
in a loss of fidelty for functionally relevant, but low-variance brain
networks. Here, we propose a novel enhancement to rank-constrained
FMRI using simultaneous recording of electroencephalography
(EEG) data. The temporal fidelity and functional specificity of
EEG provide an excellent opportunity for constraining the estimated
temporal subspace of the FMRI data. To our knowledge, this is the
first demonstration of using EEG to aid the reconstruction of FMRI
data, rather than simply forming post hoc associations.

To do this, we solve the following problem:

minimize ||Φ(UV ∗)− y||2
such that rank(UV ∗) ≤ r

and ∀ v ∈W, v ∈ V
(1)

where U are spatial components, V are temporal components, Φ is
a linear operator containing MRI gradient and receive coil sensitivity
encodings, and y are the under-sampled measurements. Additionally,
W contains vectors derived from the EEG measures, which constrain
the recovery of temporal characteristics by its explicit inclusion in the
subspace defined by V .

Simultaneous EEG and FMRI were acquired using a 3 T MRI
system (Siemens Healthcare), and a 32-channel MRI-compatible EEG
system (BrainProducts). A conventional multi-slice 2D echo-planar
imaging acquisition was used to acquires a 4-slice, 2x2x2 mm3 at
200 ms temporal resolution data set, over a 3 minute duration in a
single subject. The EEG data were corrected for gradient and bal-
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Fig. 1. Figure 1 – The role of EEG information in the rank-constrained FMRI
reconstruction process. In the recovered time-courses, the EEG-informed
reconstruction improves correlation with the true network temporal mode.

listocardiographic artefacts, followed by extraction of the theta-band
(4-7 Hz) power envelope using the short-time Fourier Transform.
The first four principal components across all channels were used as
the electrophysiological constraint, which were then transformed into
haemodynamic space using a haemodynamic response function.

We demonstrate, preliminarily, that using an externally derived
EEG measurement can improve the fidelity of under-sampled FMRI
signal recovery. We retrospectively under-sampled the FMRI data
to 10% (R=10), using a rank constraint of r = 16. We show that
including four EEG components in the FMRI temporal subspace
can improve the recovery of the temporal mode associated with the
strongest resting state brain network, improving canonical correlation
from 0.796 to 0.848. This work introduces a potentially exciting
avenue for multi-modality brain imaging, through unique integration
of the EEG and FMRI measures to exploit their mutual information.
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Abstract— Sparse sampling method is one viable option to 

low-dose CT, and has been actively investigated in terms of both 

reconstruction algorithm and physical realization of the sampling. 

Sparse-view sampling is a straightforward way and is considered 

a feasible solution particularly to various cone-beam CT 

applications. Recently, we have proposed and developed another 

type of sparse sampling scheme, which is called many-view under-

sampling (MVUS). In the MVUS scheme, the x-ray beam is 

partially blocked by multiple radio-opaque strips thereby 

reducing the radiation dose to the patient. In this abstract, we 

summarize our work that demonstrate its feasibility in a cone-

beam CT setup and also report preliminary results acquired from 

a fast-gantry type diagnostic CT system. For image 

reconstruction, we used a modified total-variation minimization 

(TV) algorithm that masks the blocked data in the back-

projection step leaving only the measured data through the slits to 

be used in the computation.  

I. INTRODUCTION 

HERE are increasing needs for and related researches of

low-dose CT for various clinical applications. Recently, 

sparse sampling approaches have been also proposed in 

conjunction with the compressive-sensing (CS)-inspired 

reconstruction theories [1]. Sparse-view sampling has been 

particularly exploited for cone-beam CT applications. In a 

diagnostic CT system which is based on a fast gantry rotation, 

however, sparse-view sampling would be technically difficult 

if not impossible. As an alternative approach of sparse-view 

sampling, we have proposed a sparse sampling technique 

called many-view under-sampling (MVUS) and have 

experimentally demonstrated its feasibility in CBCT 

applications [2, 3]. In the MVUS approach, the x-ray cone-

beam is partially blocked by multiple radio-opaque strips that 

are placed between the x-ray source and the patient.  

II. METHODS

A. Systems 

To experimentally implement the MVUS scanning, we used 
an object-rotating cone-beam CT system (EBSCAN #DCT, 
EBTECH, Daejeon, Republic of Korea) and also used a 
diagnostic CT system (Bodytom, Neurologica, USA). A 
reciprocating beam-blocker was used for CBCT and a rotating 
disk-type beam-blocker was used for the diagnostic CT 
considering their mechanical durability as well as data sampling 
efficiency.  

B. Reconstruction algorithm 

ˆ arg min
j

TV

f f   (1) 

, such that 
j

THf g     

, where 
j

f  represents an image under jth iteration, and  the 

minimum image total-variation solution. 
TV

 represents the 

total-variation of an image in 3-dimension. The system matrix 

H was based on a ray-driven model with T representing the 

masking operation according to the available measured data g 

through the slits, and   was determined empirically 

considering the data distance convergence in the POCS only 

iterations. 

III. RESULTS

Optimally chosen set of parameters for the beam-blocker 
motion with the aid of the reconstruction algorithm resulted in 
an outperforming image quality as shown in Fig. 1 in CBCT. 

Fig. 1. Image reconstructed by (a) low mA scan + FBP, (b) low mA + TV, 

and (c) MVUS + TV are shown, respectively. The display window is [-1000, 
100] HU. 

We have experimentally demonstrated the feasibility of 
MVUS scanning for low-dose CBCT, and investigated various 
scanning configurations to seek an optimum condition. With 
further studies, the MVUS is believed to contribute to low-dose 
CT imaging in combination with low-mA scanning method.  
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Fig.2 Linear Regression and Bland-Altman plot of SG vs ECG RR-intervals. 

 

     

Fig.3 Temporal 

evolution of a 
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profile across the 

ventricles. 

 
Fig.1a Modulation of central k-space coefficients 
Fig.1b Respiratory (green) and cardiac (red) filters 
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I. INTRODUCTION 

Recent advances in cardiac MR imaging, which make use of 
modern acquisition [1] and reconstruction schemes [2,3,4], have 
the potential to challenge existing paradigms by enabling 
simultaneous functional and anatomical 3D assessment of the 
whole-heart in one scan and during free-breathing. However, 
current solutions still present some important limitations 
regarding cardiac and respiratory gating. In particular, cardiac 
gating usually requires the use of external ECG devices [2], 
which need setup time, cause patient discomfort and are 
susceptible to magnetic perturbation. Here we propose a fully 
self-gated strategy to 5D reconstruction, where readouts are 
automatically and efficiently sorted according to the respiratory 
and cardiac motion. 

II. METHODS 

This preliminary study was performed on a 1.5T clinical 
MRI scanner (MAGNETOM Aera, Siemens Healthcare) using 
a prototype free-running non-ECG-triggered 3D golden angle 
radial bSSFP sequence in N=3 healthy volunteers. Continuous 
acquisition using a novel 3D radial sampling pattern and a 1-1 
180 binomial water excitation radiofrequency (RF) pulse for fat 
suppression allowed to minimize eddy current effects and to 
acquire in fully preserved steady-state magnetization. A fully 
automated algorithm extracted the physiological cardiac and 
respiratory motion signals by analyzing the modulation of the 
central k-space coefficient of all radial readouts (Fig 1a). 
Subject-dependent bandpass filters (automatically centered on 
the subject’s specific motion frequency) were applied to the 
frequency spectra to isolate respiratory and cardiac self-gating 
signals (Fig 1b). The coils yielding the strongest motion 
information were automatically selected (Fig 1a). Self-gated 
cardiac triggers were obtained by detecting the peaks on the 
filtered and selected signals, and then compared to the ECG 
triggers. Correlation between the two sets of cardiac cycle 
duration was investigated with linear regression analysis and 

Bland-Altman 
plot (Fig 2). 
Extracted signals 
were employed 
to sort the 
acquired data 
into cardiac and 

respiratory 
motion-resolved 

bins. Readouts 
were first sorted 
according to the 

respiratory motion amplitude (6 different states) and then to the 
cardiac phase (50 ms window width). The resulting 5D (x-y-z-
cardiac-respiratory dimensions) undersampled datasets were 
reconstructed using a k-t sparse SENSE algorithm [2], which 
exploited sparsity along both cardiac and respiratory 
dimensions. 

III. RESULTS 

Both respiratory and cardiac motion 
signals were automatically and 
successfully extracted in all volunteers. 
The self-gated cardiac triggers were 
relatively accurate with respect to the 
reference ECG triggers: in particular, 
self-gated cardiac cycle duration 
deviated from the reference ECG RR-
interval by 30.7±12.2 ms. Visual 
comparison between the fully self-gated 
and ECG-gated 5D reconstructions, as 
well as between temporal motion 
evolutions of ventricular section profiles 
(Fig 3), did not exhibit any significant 
difference.  

IV. CONCLUSION 

The proposed framework enables 
fully automated self-gated cardiac and 
respiratory motion resolved imaging of 
the whole-heart with isotropic spatial 
resolution and minimal operator-
interaction. These preliminary results 

show promising correlation between self-gated and ECG-gated 
triggers. Further quantitative validation is necessary.  
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Abstract—We present an improved version of the BLoch response
recovery via Iterative Projection (BLIP) algorithm for Magnetic Res-
onance Fingerprinting (MRF), that drastically reduces the computation
time using an adaptive dictionary. At each iteration, the BLIP dictionary
is updated through a clustering technique in the quantitative parameter
space based on the fingerprint distribution across all voxels. Similar to
a random tree, new parameter sets are selected around these clusters,
making it possible to obtain a higher resolution than the original
dictionary. Without loss of accuracy in reconstruction, simulations with
a numerical phantom demonstrated that the computation time and the
required memory to store the dictionary is significantly reduced in
comparison to a dictionary with finer but fixed resolution.

I. INTRODUCTION

Inspired by the recent growth of Compressed Sensing (CS) tech-
niques in MRI, the Magnetic Resonance Fingerprinting (MRF) was
introduced to accelerate the quantitative imaging [1]. However, the
exact link to CS was not made explicit. More recently, a full CS
strategy was formulated in [2] including a random pulse excita-
tion sequence following the MRF technique, a random Echo-Planar
Imaging subsampling strategy, and an iterative projection algorithm
that imposes consistency with the Block equations, namely BLoch
response recovery via Iterative Projection (BLIP). The algorithm is
given by

X(n+1) = P(R+B)N
[
X(n) + µhH

(
Y − h

(
X(n)

))]
, (1)

where X ∈ CN×L represents the magnetization response of the
image with N voxels, Y ∈ CM×L corresponds to the measurements,
L is the excitation sequence length, h is an operator that describes
the undersampling in k-space, n stands for the recursion index,
and µ is a stepsize, which is selected adaptively. P(R+B)N is the
voxelwise projection on to signal model (R+B)N approximated by
the dictionary D. The projection for the voxel i can be computed as
k̂i = argmaxk real〈Dk, Xi,:/〉||Dk||2, where Xi,: is the magnetiza-
tion sequence of the voxel i, D = [D1, ..., Dd] ∈ CL×d, d is the size
of the dictionary. It has been shown that BLIP outperforms the MRF
technique proposed in [1] especially with a shorter magnetization
sequence. Nevertheless, the computation time increases linearly with
the size of the dictionary which needs to be big for high quality
reconstructions, becoming a trade off between speed and accuracy.

II. ADAPTIVE-BLIP

In order to address this problem, we propose to project onto an
adaptive dictionary that is updated in each iteration, namely Adaptive-
BLIP. The number of tissues to be imaged in MRI is usually small
compared to the number of voxels in the image, we use this as
prior to update the dictionary. To begin with, a coarse dictionary
is first defined using a fixed grid. After the projection, quantitative
parameters θc are clustered by K-means based on the fingerprint
distribution across all voxels. The number of clusters nc can be
defined proportional to the number of expected tissues in the volume
to be imaged. For each computed cluster, nr new parameter sets
are chosen randomly using a Gaussian distribution with standard

deviation σT1 , σT2 and σoff defined according to the T1, T2 and off-
resonance intervals. All of the these parameter sets help to generate
the new adaptive dictionary using the Bloch equation. The Bloch
equation manifold is thus explored in a similar way to a random tree,
allowing the algorithm to have a better resolution than the original
dictionary, and resulting in a much smaller dictionary that is updated
in each iteration.

III. SIMULATIONS

We provide a comparison between the proposed method and BLIP
on the same numerical phantom used in [2]. BLIP is tested with two
different size dictionaries and the parameters for Adaptive-BLIP is
set as nc = 10 and nr = 10, resulting in d = 110, the maximum
number of iterations is set to 20. Two experiments are given in Figure
1 and 2. They evaluate the performance of the algorithms in terms
of the sequence length and input SNR respectively.
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Fig. 1: Reconstruction performance as a function of L
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Fig. 2: Reconstruction performance as a function of the input SNR

In order to get a visual indication of the performance of algorithms,
we provide also images of T1 map for L = 200 with input SNR of
40dB in Figure 3. We may remark from the figures that the Adaptive-
BLIP can achieve high quality reconstruction with significantly less
processing time. Our future work will include more simulations and
real data reconstructions.

(a) Original (b) d = 896 (c) d = 25448 (d) A-BLIP

Fig. 3: A visual comparison of the T1 map estimates
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Abstract—In neuroscience, phase-amplitude coupling (PAC) refers to
the interaction between the phase of a slow neural oscillation and the
amplitude of high frequencies within the same signal or at a distinct
brain location. To model PAC, we use new parametric generative driven
auto-regressive (DAR) models. These statistical models provide a non-
linear and non-stationary spectral estimation of the signal, and are able
to capture the time-varying behavior of PAC. We also show that they
are more robust to short signals than two state-of-the-art empirical PAC
metrics.

I. INTRODUCTION

Auto-regressive (AR) models are stochastic signal models that have
proved their usefulness in many applications. One of their advantages
is the existence of fast inference algorithms [1] and to provide a
compact representation of the spectral content of a signal. Standard
AR models are so-called stationary, meaning that the statistics of the
signal are assumed to be stable over time. When working with such
models, the spectrum is therefore not a function of time. In many
applications, this modeling assumption is not adapted to describe the
interesting dynamics of the physical system observed. This is for
example the case in the field of econometrics where time-varying or
non-linear AR models were first studied [2], but it is also the case for
physiological signals as it will be illustrated below with a phenomena
known as phase-amplitude coupling (PAC) [3].

II. DRIVEN AUTO-REGRESSIVE MODELS

An AR model specifies that a signal y depends linearly on its own
p past values, where p is the order of the model:

y(t) +

p∑

i=1

aiy(t− i) = ε(t) (1)

where ε is the innovation, modeled with a Gaussian white noise:
ε(t) ∼ N (0, σ(t)2). To extend this AR model to a non-stationary
model, one can assume [4] that the AR coefficients ai and the
innovation variance σ2 are driven by a polynomial function of a
given exogenous signal x, here called the driver:

ai(t) =
m∑

j=0

aijx(t)
j , log(σ(t)) =

m∑

j=0

bjx(t)
j (2)

We call this model a driven auto-regressive (DAR) model.

0 20 40 60 80 100 120 140 160 180
Frequency (Hz)

−4
−3
−2
−1

0
1
2
3
4

P
o
w

e
r 

(d
B

)

x=0: 54
x=0: 27

x= ¡ 0: 00
x= ¡ 0: 27

x= ¡ 0: 54
PSD

Fig. 1. Power spectral density (PSD) evaluated through a DAR model, for
different driver’s values x.
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T=4.8s

Fig. 2. Frequencies of the maximum PAC value, for three methods: a DAR
model with (p,m) = (10, 1) and two metrics from [5] and [6]. The simulated
signals last T = 1.2 (left) and 4.8 (right) seconds, at a sampling frequency of
240 Hz. The signals are simulated with a PAC at 3 Hz and 50 Hz. The DAR
models correctly estimate these frequencies even with a short signal length,
while the two other metrics fail.

III. PHASE-AMPLITUDE COUPLING

In neuroscience, phase-amplitude coupling (PAC) refers to the
interaction between the phase of a slow neural oscillation and the
amplitude of high frequencies. To give a proper model to PAC, we
applied DAR models on a human electro-corticogram (ECoG) channel
from [3], using a band-pass filter to extract the driver x from the signal
y. From the estimated DAR model, we computed the power spectral
density (PSD) conditionally to the driver’s values x, as presented in
Fig. 1. PAC can be identified in the difference of the PSD as the
driver x varies: the PSD has more power for negative driver’s values
than for positive driver’s values, and PSD shapes are also different.

We also simulated 100 signals with a PAC between fx = 3 Hz
and fy = 50 Hz, estimated DAR models on them, and selected the
frequency with the maximal PSD modulation. The results, presented in
Fig. 2, show that DAR models are more robust than two state-of-the-art
PAC metrics [5], [6] when the signals length is short.
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Abstract This study presents a comparison analysis of different 

reconstruction techniques for 
17

O MR images and quantification 

of cerebral metabolic rate of oxygen consumption (CMRO2). 
17

O 

MR 3D data sets of a healthy volunteer’s brain were acquired at a 

clinical 3 Tesla MR system with inhalation of 
17

O2 gas. 

Conventional Kaiser-Bessel (KB) reconstruction was compared 

with total variation (TV) constrained reconstruction and with our 

recently proposed method of iterative reconstruction of 
17

O MR 

images with 
1
H constraint. Here, anisotropic diffusion (AD) of 

coregistered 
1
H image was used for the penalty term and this 

1
H 

MR image of high spatial resolution acted as edge-preserving 

constraint. AD constraint reconstruction showed higher SNR and 

improved quality of 
17

O MR images. It is essential for localized 

CMRO2 quantification in patients with heterogeneous 

Glioblastoma brain tumors, which is hardly possible with 

conventional reconstruction techniques. 

I. INTRODUCTION 

Abnormalities in brain oxygen metabolism are found in 
tumors, cerebrovascular and neurodegenerative diseases. A 
useful biomarker of metabolic brain activity is the cerebral 
metabolic rate of oxygen consumption (CMRO2). CMRO2 can 
be quantified with 15O-PET [1] or direct 17O-MRI [2-5] by 
fitting a pharmacokinetic model to the signal dynamics seen 
during and after the administration of 17O-enriched gas. So far, 
17O-MRI was applied mainly at ultra-high fields (B0≥7T) to 
overcome the low SNR at clinical field strengths (B0≤3T). 
Recently, we showed that 17O-MRI is feasible at clinical field 
strengths [3] and the method of profile likelihood analyses 
showed that CMRO2 can be reliably quantified [4]. 

The aim of this study was to compare conventional 
reconstruction techniques with iterative 1H constraint 
reconstruction of 17O MR images. 

II. THEORY 

In iterative reconstruction the objective function is 
minimized: 

𝐽(𝒙) = ‖𝑨 ∙ 𝒙 − 𝒚‖2
2

+ 𝜆 ∙ 𝑹,                       (1) 

where 𝐀 denotes the system matrix that maps the image x to 
the corresponding raw data 𝒚, λ is the weighting factor of the 
regularization term R. In our recently proposed AD 
reconstruction [5] regularization term contains a gradient 
operator 𝒈 which is applied to 1H MPRAGE image:  

                 𝑹D = ∫ 𝒙𝛻(𝑫𝛻𝒙)                             (2) 

          𝑫 = (1 −
𝒈∙𝒈𝑇

|𝒈|2
√1 +

𝒈2

𝑎2⁄⁄ )                           (3) 

III. RESULTS AND DISCUSSION 

First, realistic 17O MRI phantom [5] was constructed from 
segmented 1H MPRAGE data set with tissue-specific H2

17O 
concentrations, experimentally measured 𝑇2

∗ and SNR values of 
17O images and used 3D radial acquisition. Structural similarity 
analysis [6] of reconstructed 17O phantom images showed that 
AD constraint (2) reconstruction has higher precision than KB 
gridding and TV constraint reconstruction. 

Secondly, 45 dynamic 3D 17O data sets were acquired in 
human brain in 17O MR experiment with inhalation of 
17O-enriched gas with 1 min temporal resolution. Figure 1 
shows comparison of single 17O-MR image (TA = 1 min) 
reconstructed with different methods. AD constraint 
reconstruction (d) has higher SNR compered to KB gridding (a) 
and TV constraint reconstruction (c). Anatomical structures 
(e.g., ventricles) are better seen in (d) compared to KB with 
Hann filter. Quantified CMRO2 values of 0.67-0.83/0.86-1.07 
µmol/gtissue/min in WM/GM regions are in a good agreement 
with results of 15O-PET studies [1]. 

 
Fig. 1. Single 17O-MR image, obtained with KB gridding without/with Hann 

filter (a/b) and in iterative constrcution with TV (c) and AD constraint (d). 

TV constraint reconstruction did not give any significant 
improvement of SNR. Averaging among the neighboring pixels 
was beneficial: AD smoothes data among pixels with similar 
intensity (mostly within one brain tissue component) and 
preserves borders within different tissue compartments (edge-
preservation), which is favorable compared to isotropic 
homogeneous Hanning filtering. Increased SNR of 17O MR 
images is needed for localized CMRO2 quantification and 
calculation of CMRO2 maps. It is of high importance for 
investigation of oxygen metabolism of heterogeneous 
Glioblastoma tumor regions. 
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A Subspace Approach to Ultrahigh-Resolution MR
Spectroscopic Imaging
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Abstract—Research and clinical applications of MR spectroscopic
imaging (MRSI) have been limited by several fundamental technical
hurdles, including low signal-to-noise ratio, limited spatial resolution,
slow imaging speed, and overwhelming nuisance water/lipid signals.
Recently, a subspace-based MRSI approach called SPICE (SPectroscopic
Imaging by exploiting spatiospectral CorrElation) has been proposed that
enables new solutions to these challenges. This work presents our latest
developments in data acquisition and spatiospectral processing within
the SPICE framework, and demonstrates their capability in achieving
ultrahigh-resolution 1H-MRSI of the brain in 5 to 10 minutes.

I. INTRODUCTION

MR spectroscopic imaging (MRSI) has been recognized as a
potentially powerful tool for in vivo, label-free molecular imaging [1],
[2]. Despite significant progress has been made in data acquisition and
processing over the past several decades [3], practical applications
of MRSI are still hindered by the challenges of low signal-to-noise
ratio (SNR), poor spatial resolution, and slow imaging speed, and for
1H-MRSI in particular, the overwhelming water/lipid signals. SPICE
(SPectroscopic Imaging by exploiting spatiospectral CorrElation) has
been recently proposed as a new approach to address these prob-
lems. SPICE uses a low-dimensional subspace model that exploits
the spatiospectral partial separability within the high-dimensional
spectroscopic signals to design special acquisition and processing
strategies for rapid, high-resolution MRSI. In this work, we will
present some latest developments that extend the SPICE framework
and lead to unprecedented combinations of SNR, resolution and speed
for 1H-MRSI of the brain.

II. SUBSPACE MODEL

We have extended the original subspace representation in SPICE
to the following union-of-subspaces model [4], [5]

ρ(r, t) =

Lm∑

lm=1

clm(r)φlm(t) +

Lw∑

lw=1

clw (r)φlw (t) (1)

+

Lf∑

lf=1

clf (r)φlf (t) +

Lb∑

lb=1

clb(r)φlb(t),

where ρ(r, t) is the spatiotemporal function of interest in MRSI, and
the partial separability representations on the right-hand side denote
the metabolite, water, lipid, and macromolecule baseline components,
each of which resides in a low-dimensional subspace spanned by
{φlm(t)}Lm

lm=1, {φlw (t)}Lw
lw=1, {φlf (t)}

Lf

lf=1 and {φlb(t)}Lb
lb=1 (with

Lm, Lw, Lf and Lb typically very small numbers). This low-
dimensional subspace model can be written also as a sum of low-
rank matrices (generalizable to low-rank tensors), meaning that the
high-dimensional spatiotemporal/spatiospectral function of interest
can be represented using a significantly reduced number of degrees-
of-freedom, making accelerated, ultrahigh-resolution MRSI possible.
Specifically, based on this subspace model, we have developed a

novel acquisition strategy for rapid, volumetric spatiospectral encod-
ing and time-interleaving sampling strategy which allows for correct-
ing effects of system instability. A novel processing strategy is also
developed for field inhomogeneity correction, water/lipid removal,
and spatiospectral reconstruction from the noisy MRSI data which
integrates subspace constraints and edge-preserving regularization.

III. ULTRAHIGH-RESOLUTION 1H-MRSI OF THE BRAIN

The proposed acquisition and reconstruction have been success-
fully applied for in vivo brain 1H-MRSI experiments. Figure 2
shows a set of representative results from data acquired in an
approximately 6-minute scan. As can be seen, high-resolution, high-
SNR spatiospectral reconstruction is obtained within such a short
acquisition window. We believe this new capability can enhance the
utility of MRSI in various science and clinical applications.

(a)

(b)

(c)

NAA

CrCho

Glx

NAA

Cr

Fig. 1. Representative brain 1H-MRSI results from a 6-min acquisition with
4 ms TE, 260 ms TR, a field-of-view of 230×230×72mm3, and a matrix
size of 76×76×24 (corresponding to a nominal resolution of isotropic 3mm).
Images (a) and (b) show reconstructed high-resolution metabolite distributions,
i.e., NAA and creatine (Cr) maps produced by the proposed method; image
(c) shows spatially resolved spectra from different voxels indicated by the
dots with different colors.
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The Challenges and Importance of Scale in Neuroscience
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Abstract—Modern neuroscience has an incredibly rich toolkit at its
disposal, with a broad range of techniques that operate at massively
different spatial and temporal scales. These techniques are crucial given
that brain structure relates to function over at least eight orders of
magnitude. A major challenge for neuroscience over the coming decade
is to relate these measurements to each other in order to understand how
microscopic features relate to whole-brain phenomena. For example, the
exploding field of connectomics includes research on defining precise
interconnections between local groups of neurons forming micro-circuits,
as well as the long-range pattern of connections between large-scale brain
regions. Relating these scales to each other is a major challenge that
will require unifying models and detailed experimental work. Similarly,
with the advent of population imaging, challenges exist in leveraging
increasingly large-n investigations to provide insight at the level of
individuals. This session will explore these challenges from the perspective
of signal processing, biophysical modelling and data analytics.
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Multimodality reconstruction in PET/CT and PET/MR
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Abstract—Nowadays, PET systems are almost exclusively available as
hybrid systems: PET/CT is a well established technology, PET/MR is
commercially available since several years and its potential is currently
being explored. The (almost) simultaneous acquisition of the anatom-
ical and/or functional images and the molecular PET image creates
new opportunities for reconstructing the tomographic images from all
available data. Four such applications are discussed in this contribution.
The anatomical image can be used to better regularize the resolution
recovery during PET reconstruction. For MR imaging accelerated by
undersampling, both modalities may benefit from joint reconstruction.
Dynamic MR imaging providing motion fields can be used for motion
compensated reconstruction from simultaneously acquired PET data. CT
or MR can be used to estimate the attenuation image, and the time-of-
flight information in TOF-PET data can be used to adjust and/or align
that attenuation MAP maximizing consistency with the PET data.

I. PET RECONSTRUCTION WITH ANATOMICAL PRIORS

By modeling the resolution in the system matrix, a sharper PET
image is obtained. However, the image typically suffers from Gibbs
artifacts, because deblurring is an ill-posed problem. In addition,
for short acquisition times, these images can be very noisy. Edge
preserving priors can be used to suppress the noise and Gibbs artifacts
while preserving as much as possible the edges between regions with
different tracer uptake. In some applications, in particular in brain
imaging, it is reasonable to assume that the anatomy, as revealed
by MR images, strongly correlates with tracer uptake. For those
applications, the PET resolution recovery can be further improved by
encouraging edges in the PET image to be aligned with boundaries
in the MR image [1].

Fig. 1. PET/MR results, left: T1 weighted MR image; center: MLEM PET
image (18F-FDG, 5 min); right: PET image regularized with a parallel level
sets prior based on the MR image.

II. JOINT PET AND MR RECONSTRUCTION

PET imaging suffers from limited spatial resolution and rather high
levels of noise, but the sampling is redundant. MR imaging often has
low noise and excellent resolution, but sampling may be insufficient
to reduce the imaging time or improve the temporal resolution.
These features seem complimentary, and therefore several groups are
investigating to what extent both modalities can benefit from joint
reconstruction, using priors that encourage similarity between some
image features. The features should be chosen such that sampling
artefact’s are suppressed in the MR image and resolution recovery
and noise suppression are improved in the PET image, but without
exchanging features not shared by both images. Several joint priors
have been proposed for this, including “parallel level sets” [3] and

several flavors of joint total variation, e.g. [2]. A prior which performs
well for this application will typically also do very well as an
anatomical prior for PET reconstruction.

III. MR BASED MOTION CORRECTION

Because of the limited amount of administered radioactivity, tens
of seconds or more are typically required to produce a PET image.
Any motion occurring during the acquisition of such image frame
will create motion blurring and therefore loss of resolution and
degradation of quantitative accuracy. For periodic motion, a gated
PET acquisition can be carried out, ensuring that images free of
motion blurring are created by using for a particular image frame
only data associated with a particular motion phase [4]. The gating
signal can be obtained from external motion tracking devices or from
MR navigator signals. Rigid and non-rigid aperiodic motion can be
compensated for as well, provided that an accurate motion field is
available. Again, such motion field can be acquired from external
devices (e.g. optical rigid motion tracking in head imaging) or from
fast MR sequences.

IV. ALIGNING THE ATTENUATION MAP

PET/CT imaging produces aligned PET and CT images which have
been shown to have significantly more diagnostic value than PET or
CT alone. In addition, the CT image is used for PET attenuation
correction, which is required for quantitative and artifacts-free imag-
ing. However, the images are often not perfectly aligned: the CT and
PET data are acquired sequentially rather than simultaneously. In
addition, the CT acquisition is very fast, enabling the acquisition of
the image in a single breath hold. The PET acquisition requires more
time and respiratory gating may be necessary to suppress blurring
due to the motion. As a result, the CT-based attenuation map is often
not well aligned to the true attenuation map that affected the PET
acquisition. This poor alignment creates artifacts and adversely affects
image quantification. Consequently, artifact-free PET reconstruction
often calls for better alignment than obtained from the independent
image reconstruction of both modalities.

Time-of-flight PET data are five dimensional and clearly redundant
for the reconstruction of the three-dimensional image data. It has
been shown that this additional time-of-flight information provides
valuable information about the photon attenuation that occurred
during the acquisition of the PET signal. That information can be
used to align the CT image to the PET image by maximizing the
consistency of the (attenuation corrected) PET data. The resulting
optimal alignment eliminates the attenuation correction artifacts.
In addition, an improved alignment may also be helpful in the
interpretation of the multimodal PET/CT image.
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Joint kq-space acceleration for fibre orientation estimation in
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Marica Pesce∗, Anna Auria†, Alessandro Daducci†, Jean-Philippe Thiran†‡, Yves Wiaux∗
∗ Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, UK
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Abstract—We propose a method to accelerate the acquisition of High
Angular Resolution Diffusion Magnetic Resonance Imaging (HARDI)
in order to promote its application in a clinical setting. The method
relies on a Spherical Deconvolution approach where the fibre orientation
distribution (FOD) is recovered in all voxels simultaneously. The dMRI
acquisition is meant to be accelerated through the partial Fourier
sampling of each diffusion weighted image. Despite the further reduction
of the acquired information, the FOD estimation still preserves its angular
resolution thanks to the structured sparsity prior that is imposed in the
problem.

Diffusion magnetic resonance imaging is a unique non-invasive
technique, enabling to extract information about the microscopic
structure of white matter tissue in vivo. Spherical deconvolution
approach is one of the several methods that have been developed
in order to extract the fibre orientation information at high angular
resolution. However, they rely on, at least, 60 diffusion images
leading to considerable long acquisition times that prevent their
application in the clinical setting.

The present study is based on the works of Daducci [1] and Auria
[2], which exploit the recent theory of Compressive Sampling in order
to recover the fibre orientations from a reduced number of diffusion
images (q-space sampling). In particular, the work of Daducci. pro-
motes the fibre orientation distribution sparsity through a voxel-wise
`0-minimisation, suggesting an accurate reconstruction from no more
than 30 q-space images. Auria et al. have built on this approach and
introduced a spatial regularization prior promoting the smoothness
of the spatial variation of fibre orientations, suggesting the FOD
reconstruction from no more than 15 q-space images. We propose
an extension of the above-cited methods where the acquisition of
each diffusion image is accelerated through partial Fourier (k-space)
sampling in order to fully exploit the spatial regularisation prior of
Auria et al..

A novel linear measurement model is defined, mapping the matrix
X ∈ Rn×N , which represents the FOD in each voxel of the imaged
brain, onto the kq-space samples Ŷ ∈ C(Nc×Ng)×k as follows:

Ŷq,c =MqFPXMS0C
(c)H(q,c)FM

(q)
k + ηq,c (1)

Each line of Ŷ corresponds to the sub-sampled k-space of the DW-
image acquired with gradient q by the channel with sensitivity c.
F represent the Fourier matrix, the matrices Mq ∈ R1×n and
Mk ∈ RN×k are binary masks representing the joint kq-space
under-sampling of interest. The columns of the matrix P ∈ Rn×n+

represent the ensemble average propagator for a single fibre oriented
in all possible n directions. Voxels outside the brain are modelled
with zero-signal through a diagonal matrix M ∈ RN×N while the
diagonal matrix S0 ∈ RN×N stores the intensities of the non-
diffusion weighted image. The acquisition of the diffusion signal from
multiple channels is taken into account through the diagonal matrix
C(c) ∈ CN×N which stores the sensitivity map of channel c. Motion

and magnetic field inhomogeneities generate a phase distortion that
is accounted in the matrix H(q,c) ∈ CN×N . The multi-channel
sensitivities are assumed to be estimated from the non-diffusion
weighted image while the phase distortion can be calibrated from low-
resolution diffusion weighted images. Measurements Ŷq,c ∈ C1×k are
assumed to be contaminated by Gaussian noise ηq,c ∈ C1×k.

The fiber orientation distribution in each voxel is recovered solving
a minimisation problem of the following form:

min
X∈Rn×N

+

‖A(X)− Ŷ ‖22 subject to ‖Kd ·X ·Kv‖0 6 κ (2)

where Kd ∈ Rn×n and Kv ∈ RN×N represent two blurring
bases imposing correlation within neighbour directions and neighbour
voxels respectively, while A(·) is the linear operator acting on X and
modelling the measurements Ŷ . The parameter κ acts as a bound on
the sparsity of X and it is computed as the number of voxels times the
average number of fibre expected per voxel. We propose a multiple-
shell approach for the q-space sampling in order to gain more accurate
identification of the white matter tissue, joint with a uniform random
k-space sampling with a fully sampled low frequency zone.
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Fig. 1. Mean success rate index evaluating the performances of the FOD
reconstruction in the case of different q-space and k-space undersampling
settings. The results have been obtained from synthetic data with SNR=30.

The fibre orientation reconstruction has been tested through nu-
merical simulations and real data in presence of different acceleration
rates. The results suggest that the kq-space approach can significantly
outperform the q-space sampling up to an acceleration of 7 with 60
diffusion images in simulated data (see Figure 1), rising the hopes
to open the door of clinical applications for high angular resolution
diffusion imaging methods.
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Abstract—We consider a learned variational approach for image
reconstruction. The variational model contains a highly parametrized
regularizer that can adapt to the structural properties of natural images.
The parameters of the model are learned from data using a loss-
based approach. The variational model is approximately minimized using
one cycle of a block-incremental gradient descent algorithm. We show
applications to image denoising, image superresolution, JPEG deblocking
and MRI reconstruction from sparsely sampled data.

I. INTRODUCTION

We consider the ill-posed linear inverse problem of finding a
reconstructed image u that satisfies the following system of equations

Au = f,

where f is the input data and A is a linear forward operator. Due
to noisy or sparse measurements f , the equation cannot be solved
directly for u. A classical approach to overcome this problem is to
consider a regularized least squares approach

min
u
R(u) + 1

2
‖Au− f‖22 ,

where R is a regularization term that imposes a smoothness prior
onto the minimizer u. One of the most influential regularization terms
in the context of image reconstruction is the total variation semi-
norm [1]. However, it is well-known that the total variation is too
simple to capture the complicated structure of real-world images.

The aim of this work is to consider a very flexible regularization
term that is learned from data such that the solution of the variational
model is as close as possible to ground truth solutions.

II. THE PROPOSED METHOD

We consider the so-called fields of experts (FoE) model [2]. The
model is written as:

R(u) =

N∑

j=1

rj(u), with rj(u) = φj(kj ∗ u),

where N � 1, is the number of “experts” and each expert rj consists
of a convolution kernel kj together with its potential function φj .
The particular choice of the kernels and functions is free and will be
learned from data.

For computing an (approximate) minimizer of the variational
model, we perform one cycle of a block-incremental gradient
method [3]. Starting from an initial image u0, the iterations k =
0...K − 1 are given by

uk+1 = uk − αk

(
(k+1)b∑

j=kb+1

∇urj(uk) +A∗(Auk − f)
)
,

where b is the block size, αk are step sizes and K = N/b is the
number of iterations. The idea of the algorithm is to perform a finite
number of K steps where each step consists of a gradient step with
respect to the data term and a block-gradient descent step with respect
to the regularizer. The algorithm might also be interpreted as an
explicit scheme of a non-linear reaction-diffusion equation or a deep
convolutional neural network, see [4] for more information.

Fig. 1. MRI reconstruction using the proposed method. From left to right:
Least squares solution, TGV reconstruction [5], and reconstruction using the
learned method.

III. LEARNING

Inspired by recent deep learning activities, we propose to learn the
parameters of the variational model (filters kj , potential functions
φj , and steps αk) from data. Therefore, we make use of training
data consisting of input data (fi)

M
i=1 and its corresponding ground

truth solutions (u∗
i )
M
i=1. For learning, we minimize a loss function

` that measures the similarity between the obtained reconstructions
uKi and the ground truth solution u∗

i .

min
(kj ,φj)

N
j=1

,(αk)
K−1
k=0

M∑

i=1

`(uKi − u∗
i ).

Figure 1 shows an example of MRI reconstruction from 4-fold
undersampled data. One can see that the learned variational model
yields significantly better results compared to a classical least-squares
solution and TGV regularized variational approach [5].
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The New Age of Optical Microscopy
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Abstract—For the past two decades we witnessed unprecedented
advances in the field of optical microscopy. These resulted in an array
of novel methods which provide diverse modalities for probing biological
samples, ranging from selective illumination over a large sample field
to detection of individual molecules and resolving molecular features at
nanometer scales, far below the classical diffraction limit of light (super-
resolution microscopy). While these techniques offer unique and previ-
ously unattainable data they also present new challenges in the handling,
derivation and analyses of this new data. I will provide an overview of
the progress and the different modalities of recent optical microscopy
methods, and discuss the technology, capabilities, applications, analysis
and ongoing and future developments and challenges in the field.
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Abstract—In this talk, I will discuss how population imaging, as
embodied in several very large scale projects focused on non-invasive
imaging of the human brain, is aiming to remap the neuroscience
landscape. These projects are producing datasets of unprecedented size
and complexity, and are not only serving as important open resources
for neuroscientists, but are also spurring rapid technological innovations
in data acquisition and analysis.

The brains connectivity structure is a key determining factor since
this determines the ways that information can be integrated. The
Human Connectome Project based in the US aims to provide the most
comprehensive map of the human brains connectivity structure. The
original project scanned 1200 healthy adults using bleeding-edge imaging
technologies, many newly developed as part of the project. A number of
major advances have already come out of this project, including rapid
imaging methods, techniques for dissecting network dynamics, and the
most highly detailed delineation of brain regions yet produced. This
endeavour has now been expanded to include focussed disease groups
and a range of ages to enable the insights provided by the HCP to
inform us about disease and development.

Medical imaging has enormous potential for early disease prediction,
but is impeded by the difficulty and expense of acquiring data sets before
symptom onset. UK Biobank aims to address this problem directly by
acquiring high-quality, consistently acquired imaging data from 100,000
predominantly healthy participants, with health outcomes then being
tracked over the coming decades. The brain imaging includes structural,
diffusion and functional modalities. Along with body and cardiac imaging,
genetics, lifestyle measures, biological phenotyping and health records,
this imaging is expected to enable discovery of imaging markers of a
broad range of diseases at their earliest stages, as well as provide unique
insight into disease mechanisms.

As these data resources grow and become enriched by long-term health
outcomes and follow-on studies, a number of important challenges need
to be addressed. While brain image analysis is highly automated for
many types of questions, many of these techniques are not currently
suitable for analyzing large data sets. More interestingly, large numbers
of subjects create new opportunities in the domain of data-driven analysis.
Finally, we will need to tackle challenges of interpretation in the face of a
large number of statistically significant results that nevertheless explain
relatively little variance.
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Abstract—We introduce a novel framework for sequence design and
execution on arbitrary MR hardware. The proposed architecture allows
for the decoupling of sequence design and execution on MR hardware
via a novel file format for sequence description. This makes sequence
design hardware-independent and aids researchers in sharing sequences
and running the same sequences on different platforms.

I. INTRODUCTION

Implementing new MR sequences often involves extensive pro-
gramming on vendor-specific platforms, which can be time con-
suming and costly. Even more so if research sequences need to
be implemented on several platforms simultaneously, for example,
at different field strengths. This work presents an alternative pro-
gramming environment that is hardware-independent, open-source,
and promotes rapid sequence prototyping. We introduce a novel
file format which allows for the efficient description of hardware
events and timing information required for an MR pulse sequence.
Platform-dependent interpreter modules convert the file to appropriate
instructions to run the sequence on MR hardware. The design of
sequences is done in high-level programming languages such as
MATLAB (The Mathworks, Natick, MA) or with a graphical interface
(i.e. JEMRIS [1]). This highly-flexible pulse sequence programming
environment is called Pulseq [2] and allows for the decoupling of
sequence design (hardware independent) and sequence execution
(hardware dependent). Furthermore, JEMRIS can be used to simulate
spin physics, allowing for comparison between real and virtual
experiments.

II. METHODS

The main components of the Pulseq environment are illustrated in
Fig. 1. The high-level sequence can be described directly in MATLAB
using functions from a custom toolbox. Alternatively, sequences
can be programmed using the graphical interface of the JEMRIS
simulation packages. Regardless of the choice of high-level interface,
a sequence file is created containing low-level sequence instructions
such as RF pulses, gradients, ADC events and delays. This sequence
file can then be executed on various platforms through hardware-
dependent interpreter modules.

III. EXPERIMENTS

Figure 2 shows the results of a gradient echo sequence executed
on three different hardware platforms: a 3T Siemens Trio equipped
with a single-channel wrist RF coil (Siemens Healthcare, Erlangen,
Germany); a 3 T GE Discovery MR750 with a 8 channel head coil
(GE Healthcare, Waukesha, WI, USA); and a 9.4 T Bruker BioSpec
MRI with a single-channel rat coil (Bruker Biospin, Ettlingen,
Germany).

Fig. 1. Overview of the Pulseq environment. Sequences are described in
a high-level design tool (left). A hardware-indpendent sequence format is
output (middle) and executed using a hardware-dependent interpreter module
(right). Simulation data may also be generated from the Bloch equation solver
JEMRIS.

Fig. 2. Images from the same sequence file executed on Siemens (a), Bruker
(b) and GE (c).

IV. RESULTS AND DISCUSSION

The new sequence format compactly represents arbitrary sequences
in an hardware-independent way. The platform independence can be
advantageous for institutions with multiple scanners and also aid in
the sharing of sequences between institutions. Sequences can easily
be evaluated by comparing simulations and measurements based on
the same sequence file.
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Introduction 
In this abstract, the ASTRA toolbox (All Scales 
Tomographic Reconstruction Antwerp) is introduced [1-3]. 
It is an open source, GPU-accelerated library for 3D and 4D 
image reconstruction in tomography. The basic building 
blocks are fast forward and backward projectors. The 
design of the ASTRA toolbox allows for full flexibility in 
specifying the geometry while still maintaining an efficient 
mapping onto the underlying hardware. The toolbox can be 
downloaded from http://www.astra-toolbox.com/  
 
Flexible acquisition geometries 
The ASTRA toolbox provides a set of highly flexible 
building blocks that can be used to construct advanced 
reconstruction algorithms for arbitrary acquisition 
geometries (e.g., circular cone-beam, arbitrary planar cone 
beam [6], laminography [9,10], tomosynthesis [11], 
conveyor belt setup, etc).  
 
Multiple modalities 
The ASTRA toolbox provides building blocks for Radon 
transform based tomography. Hence, it can be invoked not 
only for X-ray or Gamma tomography with synchrotron 
radiation or micro-CT systems [1], but as well for electron 
tomography [2], neutron tomography [8], etc.  
 
N-D tomography 
The ASTRA toolbox allows to build novel reconstruction 
methods for 2D (e.g., parallel beam), 3D (e.g. cone-beam), 
4D (e.g. dynamic CT [7,13]), or even 6D (diffraction 
tomography). 
 
User friendly 
The ASTRA toolbox comes with a MATLAB and 
PYTHON interface for easy user interaction and is available 
for both Windows and Linux. It can be easily integrated 
into other tomographic processing software [4,5].  Some 
examples from different application fields will be touched 
upon. Finally, an outlook is given towards large data 
tomographic reconstruction with the ASTRA toolbox. 
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Tony Stöcker ∗†

∗ German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
† Department of Physics and Astronomy, University of Bonn, Bonn, Germany

Abstract—MR physics computer simulations are of high educational
value. Further, they serve as essential tools in basic MRI method develop-
ment, sequence design and protocol optimization, and generating ground
truth data for image reconstruction and post-processing algorithms. The
open-source C++ software project JEMRIS provides a versatile multi-
platform MRI simulation environment. General Bloch equation-based
modeling of a large spin system is combined with the most important
off-resonance effects, parallel receive and transmit, nonlinear gradient
fields, and spatiotemporal parameter variations at different levels, e.g.
to simulate object motion, molecular diffusion or tissue contrast agent
uptake. The software provides a highly flexible module for the interactive
design of general MR pulse sequences.

I. INTRODUCTION

Beyond its high educational value, MR physics simulation is
an important research tool in many different areas such as rapid
prototyping of new ideas, validating physical models and hypotheses,
RF pulse design, or the generation of ground-truth data to test novel
algorithms for image reconstruction and image analysis. Moreover,
MR simulations provides easy access to investigate the limits of MRI
which are often harder to explore in real experiments. Therefore, the
open source C++ project JEMRIS was started in 2006 to provide a
versatile MR simulation environment to the community [1]. Active
development over the past 10 years strongly improved the software.
It has many active users world-wide and was successfully used in
different research projects, e.g. to investigate the spin-echo BOLD
signal at high field [2] or to generate ground-truth MRI data of the
carotids for image analysis [3]. JEMRIS provides a flexible pulse
sequence design interface which was recently extended to control
the sequence on real MR hardware by means of the novel low-level
hardware independent file format PulSeq [4].

II. METHODS

JEMRIS performs numerical integration of the general Bloch equa-
tions on user-defined objects consisting of a large spin ensemble. The
semi-classical approach on non-interacting spins, a valid assumption
in most MRI applications, is inherently well-suited for massive
parallel computing. The software provides an easy-to-use framework
for MR pulse sequence design which impose little limitations on
the complexity of the experiments. The simulations take various
physical effects into account which have impact on real MR ex-
periments: susceptibility-induced off-resonance, chemical shift, eddy
currents, concomitant fields, spatial non-linearity of the encoding
fields (”gradients”) and RF reception and transmission with arbitrary
number of channels in user-defined coil configurations. Moreover,
a general approach was implemented to simulate spatiotemporal
parameter variations of the object. This can be utilized for realistic
MR simulations of rigid motion or flow and diffusion of spins.

III. RESULTS

Figure 1 (a) shows the concept of pulse sequence serialization in
JEMRIS. Figs. 1, (b), (c), and (d) show different use-cases of basic
MR simulations: inversion of a single spin, the famous five echoes
generated by three RF pulses, and artificial ghost images induced by

(a) Sequence Tree (b) Adiabatic Inversion

(c) Three RF Pulses (d) Ghost Simulation

Fig. 1. (a) Sketch of a native EPI pulse sequence (top) and its software
representation as a left-right ordered tree (bottom). (b) Spin dynamics for an
adiabatic inversion pulse. (c) MR signals resulting from three RF pulses. (d)
EPI ghost artifacts induced by eddy currents.

eddy currents as observed in EPI. More examples and use-cases will
be presented and discussed at the workshop.

IV. CONCLUSIONS

The versatile MR simulation environment JEMRIS is a general-
purpose tool for MRI physicists and other scientists interested in
generating realistic MRI simulation data. Implementation details and
computational costs for different applications will be discussed at the
workshop.
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Abstract—The development of energy-sensitive photon-
counting x-ray detectors (PCD) has created great excitement in 
x-ray and x-ray CT systems. Such innovative new x-ray 
detectors count individual photons and sort them into selected 
energy bins. It is said that PCDs will not only improve 
anatomical or functional CT imaging significantly but also 
provide an opportunity for molecular CT imaging and low-
dose CT. On the side of enthusiasm, a lot of questions are being 
asked. Are count rates of PCDs sufficient for intense x-ray flux 
of CT systems? Is the current energy resolution sufficient? 
What are the imaging technologies that need to be developed 
for PCD-CT and what are the remaining issues? When will the 
first commercial PCD-CT system be introduced? Aiming at 
providing answers to the questions listed above, we will review 
the current status and perspectives of the imaging technologies 
for PCD-CT. Methods to model, calibrate, and compensate for 
the non-ideal properties of PCDs will be discussed. Algorithms 
to reconstruct images from spectral data will be presented.  

We will present overview of two papers [1, 2] in this talk.  

Since their discovery in 1895 by Wilhelm C. Röntgen, x-
rays have been playing a critical role in medical imaging. 
They are helping radiologists and physicians to detect and 
characterize disease processes of the skeletal system, soft 
tissue, and their functionality. Transmitted and detected x-ray 
beams generate a snapshot projection image, a series of 
projection images, or cross-sectional tomographic images. 
Multi-slice x-ray computed tomography (CT) scanners 
provide three-dimensional images of the linear attenuation 
coefficient distribution within a patient, accurately 
delineating organs and tissues. However, there are four major 
limitations to current CT and x-ray technologies: 1) the 
contrast between different soft tissues is often insufficient; 2) 
images are not tissue-type specific (different tissue types can 
appear with similar pixel values); 3) “CT scanning is a 
relatively high-dose procedure” [3]; and 4) gray-scale pixel 
values of CT images, which should be linear attenuation 
coefficients, are not quantitative but qualitative (see Sec. V.E 
for more discussion). These limitations result from or are 
made worse by the energy integrating detectors used in CT.  

Factors influencing the x-ray linear attenuation 
coefficients include the chemical composition and mass 
density of the object, and the energy of the x-ray photons. 
Therefore, the transmitted x-ray spectra carry information 
about different tissue types. The energy-integration detectors 
(EIDs), however, measure the energy-integrated signals of x-
ray photons, thus losing all of the energy-dependent 
information. In addition, EIDs weight lower energy photons 
less, which carry larger contrast between tissues than higher 
energy photons. This results in increased noise and decreased 
contrast. 

Recently, photon counting detectors (PCDs) with energy 
discrimination capabilities based on pulse height analysis 
have been developed for medical x-ray imaging. These PCDs 
count the number of photons of the transmitted x-ray 
spectrum using between two and eight energy windows. 
PCD-based CT systems with multiple energy windows have 
the potential to improve the four major limitations we 
discussed before. Electronic and Swank noise affect the 
measured energy, but do not change the output signal 
intensity (i.e., the counts), and the energy overlap in the 
spectral measurements can be smaller than that from any of 
the current dual-energy techniques using EIDs. In addition, 
more than one contrast medium can be imaged 
simultaneously and becomes distinguishable if the detectors 
have four or more energy thresholds or windows. PCDs may 
therefore lead to novel clinical applications as will be 
discussed.  

The performance of PCDs is not flawless, however, 
especially with the large count rates in current clinical CT. 
Due to the stochastic nature of time intervals between photon 
arrivals and the limited pulse resolving time, quasi-coincident 
photons generate overlapping pulses which may be recorded 
as a single count with a wrong energy. This phenomenon is 
called pulse pileup and results both in a loss of counts, 
referred to as dead time loss, and a distortion of the recorded 
spectrum. It is therefore critical to develop schemes to 
compensate for these effects. Other phenomena may also 
degrade the spectral response of PCDs, including incomplete 
charge collection generated by x-rays due to charge sharing 
and charge trapping effects. We will review various 
performance degradation factors.  

Our aim with this paper is to provide the current status 
and future perspective of key technologies and applications 
of PCDs in medical imaging. Three technologies discussed 
are the detector technologies, imaging technologies, and 
system technologies. Potential benefits and clinical 
applications of PCD-based CT systems are discussed.  
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Abstract—We present our BART Toolbox for computational Magnetic
Resonance Imaging (MRI). The main motivation for the development
of this toolbox was the simultaneous need for rapid prototyping of
new computational imaging methods for MRI and for highly efficient
implementations. The main philosophy is the use of generic numerical
algorithms and re-usable and highly configurable software components.
The BART toolbox consists of programming libraries and flexible
command-line tools. It contains tools for simulation, pre-processing,
calibration, and image reconstruction.

I. COMPRESSED SENSING AND PARALLEL IMAGING

Compressed sensing is based on the idea that a sparse signal can
be recovered using iterative denoising from undersampled data if the
aliasing is incoherent. This idea can be applied to MRI and also
combined with parallel imaging [1], [2]. In parallel imaging, the
signal can be modelled as samples of the Fourier transform of the
magnetization image ρ modulated by the receive-coil sensitivities cj
along a given k-space trajectory k(t):

yj(t) =

∫
d~r ρ(~r)cj(~r)e−2πi~k(t)·~r

If the coil sensitivities cj are known, image reconstruction can
be formulated as a linear inverse problem [3]. For autocalibrating
parallel imaging the sensitivities must be estimated from the data.
This yields a bilinear problem which is similar to blind multi-
channel deconvolution. Three different reconstruction approaches are
implemented in BART: non-linear inversion (NLINV) [4], structured
low-rank matrix completion (SAKE) [5], and ESPIRiT [6] which is
based on identification of the signal subspace.

II. GENERALIZED RECONSTRUCTION

Many recent methods are based on high-dimensional reconstruc-
tion problems which include additional time and parametric dimen-
sions (see Fig. 1 for examples). To facilitate experimentation, BART
implements a generic framework based on the following optimization
problem [7]:

argmin
x

∑

j

‖W (PF
∑

k

Sj
kxk − yj)‖22 +

N∑

i

λifi(Bix)

Here, F is a multi-dimensional Fourier transform, P is a sampling
operator, S the multiplication with the sensitivities, W a weighting
matrix, the Bi are linear operators, fi convex functions, λi regulariza-
tion parameters. For arbitrary combinations of certain regularization
terms and transforms along arbitrary dimensions, this problem can
be solved using ADMM and a library of proximity functions using
the following BART command:

> bart pics -Rf :B:C:λ -R ... [-t P] -p W y S x

III. CONCLUSION

BART provides a flexible and efficient framework for rapid proto-
typing of advanced computational methods in MRI.

Fig. 1. Reconstruction of high-dimensional data using BART. Top: Highly
accelerated 4D-flow [9]. Bottom: Dynamic contrast-enhanced MRI using
GRASP [10]. Data courtesy of Joseph Y. Cheng and Tobias Block.
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Abstract—Brain functional connectivity, derived from resting-state
fMRI acquisition can be used to study inter-subject differences, extracting
neuro-phenotypes capturing that capture individual’s psychological traits
or psychiatric disorders. Here we study data-analysis approaches that
build a connectome –a matrix of interactions– between brain regions
and rely on supervised learning to discriminate subjects. Using a variety
of applications to neuro-psychiatric disorders, we benchmark the choice
of different methods for the various steps of the processing pipelines.

Functional-connectivity fMRI captures neural interactions via fluc-
tuations in the observed brain signals. Comparing functional con-
nectivity across subjects can reveal mechanisms or biomarkers of
pathologies from resting-state experiments. Resting-state acquisition
are particularly interesting in a population-imaging as they are easy
to run at a large scale, even on diminished population.

Standard neuroimaging analyzes are based on mapping the re-
sponse of individual brain modules. However, studying interactions
calls for a more complex model. It has given rise to a hoard of
approaches, ranging from ICA to small-word networks.

We present a consistent inference framework bridging these various
methods. The central notion is that of a “connectome”, describing
interaction strengths between regions of the brain. Specifically, we
consider connectome-extraction pipelines composed of four steps: 1)
region estimation, 2) time series extraction, 3) matrix estimation, and
4) classification –see figure 1. The corresponding description of brain
activity maps easily to intuitions on brain function and connectivity
as well as solid mathematical underpinnings that can guide data-
processing choices.

We give benchmarks of the various aspects of the connectome
extraction and comparison pipelines in predictive-modeling settings.
Used on populations of subjects they capture individual behav-
ior traits from resting-state activity. We have successfully used
connectome-based prediction on various neuro-psychiatric disorders.
In particular, we have shown prediction of autism spectrum disorder
from resting-state acquisition of completely unknown scanning sites.
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Abstract—We consider recovering vectors h ∈ RL, and xn ∈ RL from
their circular convolutions yn = h ∗ xn, n = 1, . . . , N . As is evident
that in these multiple observed convolutions, one of the vectors is fixed
while the other varies. The vector h is only assumed to be S-sparse, and
each of xn is a member of a known K-dimensional subspace.

Using lifting, one can frame the deconvolution as a joint rank-1,
and sparse matrix recovery problem [1]. The joint structure cannot
be efficiently relaxed, however, we show that by allowing the quantity
N of inputs to exceed a minimal number, it is possible to effectively
solve the problem by relinquishing the sparsity constraint altogether. In
particular, we show that if each of the xn lies in a known random
subspace then it is possible to recover all of the xn, and h using
nuclear-norm minimization whenever K+S log2 S . L/ log4(LN), and
N & log2(LN). Importantly, we only require h to be sparse, i.e., the
support of h is not fixed a priori, which makes it a first result of this
form to the best of our knowledge.

We motivate the problem by discussing its application in wireless
communication over a multipath channel. Both the delays and fading
coefficients of the channel are unknown. The encoder codes the messages
randomly and transmits them one after the other over the channel and
the decoder is able to discover all of the messages and the channel impulse
response.

I. INTRODUCTION

We consider the problem of recovering length-L vectors
x1, . . . ,xN , and h from their circular convolutions

yn = h ∗ xn, n = 1, . . . , N.

This problem referred to as the blind deconvolution and is one of the
core problems in system theory, signal processing, and communica-
tions. The problem is very ill-posed, and it is easy to see this in the
Fourier domain

Fyn =
√
L(Fxn � Fh), n = 1, . . . , N,

where F is an L × L normalized DFT matrix. As is evident, the
blind deconvolution turns into a question of recovering two vectors
by observing only their Hadamard product. We show that the ill-
posed nature of the problem can be averted under a very general set
of structural assumptions. We assume that each of the input vector
xn resides in a known subspace, i.e.,

xn = Cnmn, n = 1, . . . , N

for some known L×K matrix Cn, and an mn ∈ RK . Furthermore,
we assume that the vector h is S-sparse. This means that the support
of h is not known a priori. Note that the earlier work [1] requires
the support of h to be known as well. The main goal of this work is
to extend the results to the case when the support of h is unknown.

Let f∗
` denote the `th row of F , and c̄`,n = (

√
LC∗

nf`). The `th
entry of Fyn can now be expressed as

(Fyn)` =
〈
f`c

∗
`,n,hm

∗
n

〉
F
, ` = 1, . . . , L, and n = 1, . . . , N,

where c`,n is the entry-wise conjugate of the column vector c̄`,n
defined above, and 〈·, ·〉F is the conventional trace inner product.
Thus the entries of a nth convolution are just the trace inner product

of a known L×K measurement matrix f`c∗`,n, and an unknown rank-
1 L×K matrix hm∗

n that varies with n. Let m = [m∗
1, . . . ,m

∗
N ]∗,

and φ`,n = c`,n ⊗ en, where ⊗ is a standard Kronecker product.
Then we can finally write

(Fyn)` =
〈
f`φ

∗
`,n,hm

∗〉
F
, ` = 1, . . . , L, and n = 1, . . . , N.

We want to find X = hm∗ given LN linear measurements. The
matrixX is row-sparse and of rank one by construction implying that
the actual number of unknowns are only ∼ S logL+KN . The sparse
and rank one constraints can be efficiently relaxed individually using
the `1 norm and the nuclear norm. However, there is provably no
effective convex relaxation for the joint sparse, and rank one structure
[2]. Fortunately, we can drop the sparsity constraint altogether here
and may only impose a rank one constrain if we are willing to have
multiple inputs (N > 1). To see this, note that when the rank-one
constraint is imposed, the number of unknowns is L + KN and
LN > L+KN as soon as N ≥ L/L−K.

The main theme of this study is to use multiple unknown inputs
{xn}Nn=1 with only known subspaces to resolve h completely
without knowing its support a priori. Our main result shows that
if we take Cn to be standard Gaussian random matrices and h is flat
in teh Fourier domain then the nuclear norm minimization recovers
the X exactly whenever L/ log4(LN) & K + S log2 S, and when
N & log2(LN).

An natural application arises in the context multipath wireless
communications, where one wants to transmit a series of messages
m1, . . . ,mN over an unknown multipath channel, which can be
modeled by a sparse h. The encoder then randomly codes each of
the messages by multiplying it with a tall random matrix Cn and
the coded message is transmitted over the multipath channel. The
decoder observes the convolutions Cnmn ∗ h, n = 1, . . . , N and
discovers the messages and channel response using nuclear norm
minimization. This shows that the coding framework in wireless
communication which has been traditionally thought to be as error
protection mechanism can also be very useful in channel equalization!
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Abstract—In recent years, there has been a growing interest in
problems such as shape classification, gene expression inference, inverse
covariance estimation. Problems of this kind have a common underlining
mathematical model, which involves the minimization in a matrix space
of a Bregman divergence function coupled with a linear term and a
regularization term. We present an application of the Douglas-Rachford
algorithm which allows to easily solve the optimization problem.

In recent years, some applications such as shape classification
models [1], gene expression [2], or inverse covariance estimation [3]
have led to matrix variational formulations of the form:

minimize
C∈S+

Df (C, S) + g(C) (1)

where S+ is the cone of symmetric semidefinite positive matrices of
size n × n, S is a given matrix in S+, f and g are proper lower-
semicontinuous (lsc) convex functions defined on the space of n×n
matrices, and Df is the Bregman divergence associated with f . Recall
that

Df (C, S) = f(C)− f(S)− tr (T (C − S)) (2)

where T ∈ ∂f(S) 6= ∅. Note also that solving (1) amounts to
computing the proximity operator of g + ιS+ at S,1 with respect
to the divergence Df , which has also been found to be useful in a
number of recent works [4], [5].
Very often, due to the nature of the problems, the regularization
functional g has to promote the sparsity of C. A generic class of
regularization is obtained by assuming that g = g0 + g1 where

g0(C) =

{
ψ(d) if C ∈ S+
+∞ otherwise,

(3)

where ψ : Rn →] −∞,+∞] is a proper lsc function and d is the
vector of eigenvalues of C, whereas g1 is a function which cannot
be expressed under this form. Typical examples are the nuclear norm
‖ · ‖∗ (or any Schatten norm) for g0 and the `1 norm ‖ · ‖1 (of the
matrix elements) for g1 [6].

In this paper, we will assume that function f can be expressed
similarly to g0 as f(C) = ϕ(d) if C ∈ S+, f(C) +∞ otherwise,
where ϕ : Rn →] − ∞,+∞] is a proper lsc convex function. In
particular, this assumption is satisfied when

f(C) =

{
− log det(C) if C � 0

+∞ otherwise.
(4)

Various algorithm have been proposed to solve Problem (1) when f
is the above function and some specific choices of the function g
are made: the popular GLASSO algorithm [3], a Gradient Projection
method [1], and a splitting technique on the regularization term [6].
Here we propose to employ the Douglas–Rachford algorithm [7],
which enables us to solve (1) in a fast manner, as soon as an
efficient procedure for the eigenvalue decomposition is provided. The

1ιE designates the indicator function of a set E.

Douglas–Rachford approach alternates proximity steps on Df (·, S)+
g0 + ιS+ and on g1. For many functions g1 of practical interest,
the proximity operator of g1 (e.g, g1 = ‖ · ‖1) has a closed
form solution [7] . Let us define F (C) = f(C) + g0(C). Let
γ ∈]0,+∞[. It can be noted that computing the proximity operator
of γ

(
Df (·, S)+g0 + ιS+

)
w.r.t. the Frobenius metric ‖ ·‖F, at some

symmetric matrix C, is equivalent to find

Ĉ = argmin
C∈Rn×n

(
F (C)− tr (TC) +

1

2γ
‖C − C‖2F

)
.

Classical properties of the proximity operator [7] state that

Ĉ = proxγF−γtr(T ·)(C) = proxγF (C + γT ).

Moreover, if C + γT = UDiag(σ)U> where U is an orthog-
onal matrix and σ ∈ Rn, then Ĉ = UDU> with D =
Diag(proxγ(ϕ+ψ)(σ)). For example, if f is the log-det function (4)
and g0 = µ‖ · ‖∗ where µ ∈ [0,+∞[, according to [8], the diagonal
matrix of eigenvalues of Ĉ is given by

D =
1

2

(
Σ− γµIn +

√
(Σ− γµIn)2 + 4γIn

)

where Σ = Diag(σ). The operations to compute proxγ(ϕ+ψ) are thus
component–wise.

The proposed Douglas–Rachford approach is easy to implement: if
an efficient procedure for the eigenvalue decomposition is available,
according to our numerical experiments, it is also very fast.
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Abstract—In the field of 3D image recovery, huge amounts of data need
to be processed. Parallel optimization methods are then of main interest
since they allow to overcome memory limitation issues, while benefiting
from the intrinsic acceleration provided by recent multicore computing
architectures. In this context, we propose a Block ParallelMajorize-
Minimize Memory Gradient (BP3MG) algorithm for solving lar ge scale
optimization problems. This algorithm combines a block coordinate
strategy with an efficient parallel update. The proposed method is applied
to a 3D microscopy image restoration problem involving a depth-variant
blur, where it is shown to lead to significant computational time savings
with respect to a sequential approach.

I. I NTRODUCTION

In many inverse problems encountered in image processing, one
has to generate an image estimatex̂ ∈ RN by minimizing an
appropriate cost functionF , which has the following composite form:

(∀x ∈ RN ) F (x) =

S∑

s=1

fs(Lsx)

where, for everys ∈ {1, . . . , S}, Ls ∈ RPs×N , Ps ∈ N∗, andfs is
a function fromRPs to R. In the case of large scale image recovery
problems, a major challenge is to design an optimization algorithm
able to deliver reliable numerical solutions in a reasonable time.

When all the involved functions(fs)16s6S are differentiable on
RN (but non necessarily convex), a very efficient strategy is the
Majorize-Minimize Memory Gradient (3MG) algorithm [1]. Itrelies
on a Majorize-Minimize (MM) approach, combined with a subspace
acceleration technique. The 3MG algorithm enjoys nice convergence
properties in both convex and non-convex cases and comparisons
with state-of-the-art optimization methods on a number of image
restoration problems have shown its good performance in terms of
practical convergence speed [1], [2]. However, when the size of
the problem becomes increasingly large, as it may happen in 3D
image processing or video processing, running this kind of algorithm
becomes difficult, due to memory limitation issues.

II. PROPOSED METHOD

The MM approach relies on the existence of symmetric positive
matrices

(∀x ∈ RN ) A(x) =

S∑

s=1

L⊤
s Diag {ωs(Lsx)} Ls,

with for every s ∈ {1, . . . , S}, ωs : RPs →]0,+∞[Ps , such that,
for every (x, x′) ∈ (RN )2, the following majoration holds:

F (x) 6 F (x′) + ∇F (x′)⊤(x − x′) +
1

2
(x − x′)⊤A(x′)(x − x′).

In the 3MG algorithm, a new iterate results from the minimization
of the latter quadratic majorant within a two-dimensional subspace
spanned by the current gradient and the previous direction.In order
to overcome difficulties related to memory requirements, wepropose
to combine 3MG with a parallel block alternating strategy. The target

vectorx is split intoJ non-overlapping block vectorsx(j) of reduced
dimensionNj 6= 0. At each iteration, only a subsetS ⊂ {1, . . . , J}
of them is selected, and the associated entriesx(S) = (xp)p∈S of x
are updated. To this end, a clever use of Jensen’s inequalityallows
us to show that, for everyS ⊂ {1, . . . , J},

(∀x ∈ RN ) A(S)(x) � B(S)(x) = BDiag
{(

B(j)(x)
)

j∈S

}
,

where, for everyj ∈ S,

(∀x ∈ RN ) B(j)(x) =

S∑

s=1

(
(L(j)

s )⊤Diag {bs(Lsx)} L(j)
s

)
,

with, for everys ∈ {1, . . . , S} andp ∈ {1, . . . , Ps},

(∀x ∈ RN ) [bs(Lsx)]p = [ωs(Lsx)]p[|L(S)
s |1|S|]p/[|L(j)

s |1Nj ]p.

Thanks to the block-diagonal structure of the majorant matrix, the
selected blocks with indicesj ∈ S can be updated in a parallel
manner according to a 3MG scheme, leading to the so-called block-
parallel 3MG algorithm. The monotonic convergence of the criterion
sequence(F (xk))k∈N to a (locally) optimal value is established,
using the same theoretical tools as in [3].

III. A PPLICATION TO 3D MICROSCOPY

The proposed algorithm is applied for solving a 3D image restora-
tion problem with depth-variant blur. Figure 1 illustratesits high
efficiency in terms of acceleration for multi-core architectures.
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Fig. 1. Ratio between the computation time for one core and the computation
time for C slave cores (crosses) with linear fitting (dotted line), forthe
restoration of a 3D microscopy image with sizeN = 256× 256× 48 pixels.

REFERENCES

[1] E. Chouzenoux, J. Idier, and S. Moussaoui, “A Majorize-Minimize
strategy for subspace optimization applied to image restoration,” IEEE
Trans. Image Process., vol. 20, no. 18, pp. 1517–1528, Jun. 2011.

[2] E. Chouzenoux, A. Jezierska, J.-C. Pesquet, and H. Talbot, “A majorize-
minimize subspace approach forℓ2-ℓ0 image regularization,”SIAM J.
Imag. Sci., vol. 6, no. 1, pp. 563–591, 2013.

[3] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, “A block
coordinate variable metric forward-backward algorithm,”To
appear in J. Global Optim., 2015, http://www.optimization-
online.org/DB HTML/2013/12/4178.html.

60



Fast and effective image restoration with trainable
nonlinear reaction diffusion

Yunjin Chen∗, Wensen Feng†, and Thomas Pock∗
∗ Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria

†School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China.

Abstract—We describe a flexible learning framework based on the con-
cept of nonlinear reaction diffusion models for various image restoration
problems. We propose a dynamic nonlinear reaction diffusion model with
time-dependent parameters (i.e., linear filters and influence functions). In
contrast to previous nonlinear diffusion models, all the parameters, in-
cluding the filters and the influence functions, are simultaneously learned
from training data. We call this approach TNRD (Trainable Nonlinear
Reaction Diffusion). The TNRD approach is applicable for a variety
of image restoration tasks by incorporating appropriate reaction force.
We demonstrate its capabilities with several representative applications.
Experiments show that our trained nonlinear diffusion models lead to
state-of-the-art performance for the tested applications. Our trained
models preserve the structural simplicity of diffusion models and only
take a small number of diffusion steps, thus are highly efficient. Moreover,
they are also well- suited for parallel computation on GPUs, which makes
the inference procedure extremely fast.

I. INTRODUCTION

Among the approaches to tackle the problem of image restoration,
nonlinear diffusion [1] defines a class of efficient approaches. In
this work, we start with a conventional nonlinear diffusion model
(P-M model [1]), and extend it to a trainable framework with a
few highly parametrized linear filters as well as influence function,
which are learned from training data. Our proposed nonlinear dif-
fusion process has several remarkable benefits as follows: (1) It is
conceptually simple as it is merely a standard nonlinear diffusion
model with trained filters and influence functions; (2) It has broad
applicability to a variety of image restoration problems; (3) It yields
excellent results for many tasks in image restoration, including image
denoising with Gaussian, Poisson or speckle noise, single image
super resolution/interpolation, compression artifacts reduction and
non-blind/blind image deblurring; (4) It is highly computationally
efficient, and well suited for parallel computation on GPUs.

II. PROPOSED NONLINEAR DIFFUSION PROCESS

The discrete P-M model is reformulated as the following discrete
PDE with an explicit finite difference scheme

ut+1 − ut
∆t

= −
∑

i={x,y}
∇>i Λ(ut)∇iut .= −

∑

i={x,y}
∇>i φ(∇iut) .

(1)
Model (1) can be improved from the aspects: (a) more filters of
larger kernel size; (b) more flexible influence functions, instead of
hand-crafted ones with fixed shape; (c) truncated gradient descent
procedure with fixed iterations/stages to accelerate the inference
phase; (d) varying parameters per stage. Therefore, we arrive at a
general nonlinear reaction diffusion model given as

ut = ProxGt

(
ut−1 −

(
Nk∑

i=1

k̄ti ∗ φti(kti ∗ ut−1) + ψt(ut−1, f)

))
,

(2)
where ∗ is 2D convolution, filters kti and influence functions φti vary
across stages and are trained from data. ProxGt(û) is the proximal
mapping operation related to the convex function Gt, see [2] for more
details.

−400 −200 0 200 400
−6

−4

−2

0

2

4

6

 

 

−400 −200 0 200 400
−400

−350

−300

−250

−200

−150

−100

−50

0

 

 

φa ρa

(a) Truncated convex
−400 −200 0 200 400
−4

−3

−2

−1

0

1

2

3

4

 

 

φb

−400 −200 0 200 400
−200

−150

−100

−50

0

50

100

 

 

ρb

(b) Negative Mexican hat

−400 −200 0 200 400
−4

−3

−2

−1

0

1

2

3

4

 

 

φc

−400 −200 0 200 400
−50

0

50

100

150

200

250

300

350

 

 

ρc

(c) Truncated concave
−400 −200 0 200 400
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

−400 −200 0 200 400
−50

−40

−30

−20

−10

0

10

20

30

40

 

 

φd ρd

(d) Double-well penalty

Fig. 1. The figure shows four characteristic influence functions (left plot in
each subfigure) together with their corresponding penalty functions (right plot
in each subfigure), learned by our proposed method in the TNRD5

5×5 model.

III. OVERALL TRAINING MODEL

As our goal is to train a diffusion network with T stages, the
training task is formulated as the optimization problem:





min
Θ
L(Θ) =

S∑
s=1

1
2
‖usT − usgt‖22

s.t.





us0 = Is0 , t = 1 · · ·T

ust = ProxGt

(
ust−1 −

(
Nk∑
i=1

(Kt
i )
>φti(K

t
iu
s
t−1) + ψt(ust−1, f

s)

))
.

(3)
In this work, we further improve our proposed trainable diffusion
model by investigating multi-scale image analysis technology and
nonlocal similarity information. The resulting models can lead to
significantly better restoration performance for a few applications.

IV. IMPORTANT FINDINGS

A major finding in this paper is that our learned penalty functions
significantly differ from the usual penalty functions adopted in partial
differential equations and energy minimization methods. In contrast
to their usual robust smoothing properties which is caused by a single
minimum around zero, most of our learned functions have multiple
minima different from zero and hence are able to enhance certain
image structures. Four representative shapes are shown in Fig. 1.
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Abstract—Proximal splitting algorithms are appropriate for the large-
scale convex optimization problems encountered in signal and image
processing. They generally contain a relaxation parameter, which is easy
to tune: the larger, the better for the convergence speed. We show that
when a quadratic term is present in the optimization problem to solve,
this parameter can be chosen larger than what is commonly known.

I. INTRODUCTION

A large number of problems in signal and image processing
[1], [2], computer vision, data mining, and many other fields, can
be formulated as large-scale convex optimization problems. They
typically involve several terms, like data fidelity terms, regularization
or structural penalties, and constraints. Thus, in all generality, one
wants to

Find x̂ ∈ arg min
x∈X

M∑

m=1

fm(Lmx), (1)

for linear operators Lm : X → Um, where X and Um are real Hilbert
spaces of large dimension, and convex, proper, lower semicontinuous
[3] functions fm : Um → R ∪ {+∞}, which may be smooth or not.
Nonsmooth penalties are beneficial to constrain the solution to be
parsimonious in some sense. We refer the reader unfamiliar with
convex optimization to the book [3] or to the tutorial papers [1], [2].

To solve such large-scale convex problems, first order proximal
splitting algorithms are particularly appropriate [1]–[4]. They proceed
by calling individually, at every iteration, the gradient ∇fm or
the proximal operator proxfm

[1]–[4] of each function, and the
linear operators Lm or their adjoints. The development of splitting
algorithms has become a very active topic in the last years, driven
by the need to solve highly demanding problems, e.g. reconstruction
of 3D volumes in microscopy, astronomy, or medical imaging; see
e.g. the recent papers [5]–[7] and references therein.

In this work, we focus on the case where one of the function in
(1) is quadratic: f1(x) = 1

2
〈x, Qx〉 + 〈x, b〉 for some positive self-

adjoint bounded linear operator Q and element b ∈ X . One typical
example is a least-squares term 1

2
‖Ax − y‖2, which corresponds

to Q = A∗A and b = −A∗y. Many problems involve a least-
squares term, like inverse imaging problems in presence of Gaussian
noise, the LASSO estimation of a sparse vector, the unmixing
problem in multispectral imaging. It is natural to view a quadratic
term as a smooth function with a ‖Q‖-Lipschitz-continuous gradient
∇f1(x) = Qx + b. Consequently, a splitting algorithm based of the
forward-backward kind [6] will be used to solve (1). We advocate an
alternative, which is to change the metric in the proximity operator.

Let us look at the simple case of minimizing a quadratic function
plus another proximable function:

Find x̂ ∈ arg min
x∈X

1
2
〈x, Qx〉 + 〈x, b〉 + f2(x). (2)

The relaxed forward-backward iteration is⌊
x̃(i+1) := proxγf2

(
x(i) − γ(Qx(i) + b)

)

x(i+1) := ρ x̃(i+1) + (1 − ρ)x(i)
.

The second step, which is a simple linear combination of the new
iterate and the previous one, is called a relaxation. Convergence
is guaranteed if γ ∈ (0, 2/‖Q‖) and the relaxation parameter
ρ ∈ (0, 2 − γ‖Q‖/2). It is generally observed in practice that, for a
given parameter γ, the larger ρ, the faster the convergence. Since
relaxation is very cheap, it is a pity that this fact is largely unknown.

Now, let us consider, instead, the relaxed proximal point algorithm,
which iterates the proximity operator of f1 + f2, but defined with
a different inner product 〈·, ·〉P = 〈·, P ·〉, for a strongly positive,
self-adjoint, bounded linear operator P . The iteration is⌊

x̃(i+1) := arg minx∈X γf1(x) + γf2(x) + 1
2
‖x − x(i)‖2

P

x(i+1) := ρ x̃(i+1) + (1 − ρ)x(i) .

If γ ∈ (0, 1/‖Q‖) and we choose P = Id − γQ, the subproblem
becomes

x̃(i+1) := arg min
x∈X

γf2(x) + γ〈x, b〉 + 1
2
‖x − x(i)‖2 + γ〈x, Qx(i)〉

= proxγf2
(x(i) − γQx(i) − γb). (3)

So, both algorithms are the same! But now, convergence is guaranteed
for ρ ∈ (0, 2), which is better. More generally, a continuum between
these two regimes can be derived. These better bounds seem to be
specific to the quadratic case. Note that the idea of preconditioning, or
linearizing, to cancel the quadratic term in a minimization subprob-
lem, is not new, see e.g. [8]. In the poster, we will extend this principle
and show new parameter intervals, for well known algorithms like
the Douglas–Rachford or Chambolle–Pock algorithms. We will show
with practical examples that a larger relaxation parameter yields faster
convergence.
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Abstract—We use Stein’s Unbiased Risk Estimate (SURE) to substan-
tially enhance AMP methods through a denoising perspective, enabling
parameter optimisation on-the-fly without the explicit need for a full
generative model. We also show these methods can be very effective in
an imaging setting that does not fit the rigorous compressed sensing
framework, suggesting that the AMP framework is more widely appli-
cable than was first thought.

I. INTRODUCTION

Compressed sensing (CS) aims to retrieve a sparse or compressible
signal x from an appropriate set of measurements y = Ax + w,
with a sampling ratio below the Nyquist rate. Approximate message
passing solutions stand out as not only being very computationally
efficient but also having performance that is accurately quantifiable
through the State Evolution (SE) equations. Intuitively at each iter-
ation the AMP estimate, x̂ can be viewed as a noisy version of the
original signal: x̂t = x+ATw+wt

eff where wt
eff is the effective noise

induced by signal interference and retrieving the signal amounts to
successive denoising steps. Here we leverage this idea to use different
denoising functions to provide an efficiently estimate of the signal at
each iteration.

II. PARAMETRIC SURE-AMP

Parametric SURE AMP [1] extends the generic AMP by using an
adaptive signal denoising module, ft(rt, ct|θt). Our goal is to select
from this flexible family of denoisers a θ that minimizes the error
of the estimate at each iteration. The implementation of parametric
SURE-AMP is summarized in Algorithm 1 where γ = m/n is
the sampling ratio. The key differences from the original AMP are
highlighted in red.

Algorithm 1 Parametric SURE-AMP
]

initialization: x̂0 = 0, z0 = 0, c0 = 1
m
‖z‖22

for t = 0, 1, 2, 3, . . . do
rt = x̂t +ATzt,
θt = Ht(r

t, ct), // parameter selection function
x̂t+1 = ft(r

t, ct|θt), // parametric denoiser
zt+1 = y −Ax̂t+1 + 1

γ
〈f ′t(rt, ct|θt)〉zt // Onsager term

ct+1 = 1
m
‖zt+1‖22

end for

Although we do not have access to x0 we can still estimate the
MSE using SURE. Furthermore, since SURE becomes more accurate
as more data is available it is particularly appropriate for the large
system limit setting of AMP.

Given a noisy scalar signal r = x0+w with var(w) = σ2 and the
scalar denoising function in the form: f(r, σ2|θ) := r + g(r, σ2|θ)
we have:

Ex̂,x0{(x̂− x0)2} = σ2 + Er{g2(r, σ2|θ) + 2σ2g(r, σ2|θ)}.
Thus we use the SURE to define:

Ht(r
t, ct) = argmin

θ
〈g2(r, σ2|θ) + 2σ2g(r, σ2|θ)〉

Furthermore, if f(·|θ) is a linear function of θ then the optimisation
can to computed in closed form, making this extremely quick.

Experimentally we have found that using simple families of denois-
ers can achieve essentially Bayes optimal performance for Bernoulli-
Gaussian data without prior information and is 20 times faster than
empirical Bayesian EM-GM-GAMP approach [1].

III. DENOISING MESSAGE PASSING FOR CT

Independently in [2] a similar denoising perspective was investi-
gated to incorporate very general denoisers such as Nonlocal Means
(NLM) into the AMP framework. For such denoisers optimising pa-
rameters and calculating the Onsager correction do not have a closed
form. Instead [2] proposed using a simple Monte Carlo estimate from
[4]. In [3] we have subsequently applied these ideas to computational
tomography (CT) to test whether such algorithms are applicable
outside of the ‘comfort zone’ of Gaussian random measurements.
This required dealing with the ill-conditioned (and deterministic)
measurement operators and the Poisson noise model characteristic
of CT systems. The former was tackled by incorporating cone filter
preconditioning while for the latter problem we were able to directly
absorb the Poisson model into the algorithm using a Generalized
AMP formulation - something that cannot be done in classical
Penalized Weighted Least Squares solutions - enabling us to separate
the effects of system conditioning and the noise model. The results
shown in figure 1 show that the NLM-CT-AMP solution provides
excellent performance and better than state-of-the-art. Furthermore,
as can be seen the role of the Onsager term in this improvement
appears to be crucial.

(a) (b)

Fig. 1. CT reconstruction of luggage scan obtained using Morpho CTX5500
Air Cargo dual energy system at 100kVp using only 72 views: (a) NLM-CT-
AMP with cone filter preconditioner, (b) State Evolution with and without
Onsager correction
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Patch-based Image Restoration using Mixture Models
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ABSTRACT

The use of patches in image processing is clearly an instance
of the “divide and conquer” strategy: since it is admittedly too
difficult to formulate a global prior/model for an entire image, patch-
based approaches process patches thereof, and combine the processed
patches to obtain the processed image. The early patch-based meth-
ods (namely the seminal non-local means–NLM–denoising method)
extract patches from the noisy image, then process/denoise them
independently (or maybe collaboratively, as in BM3D), and finally
return them to their original locations (averaging overlapping pixel
estimates).

More recent classes of approaches that build global image mod-
els/priors also adopt a divide and conquer paradigm, by forming
a function computed from image patches. This class was arguably
initiated with the expected patch log-likelihood (EPLL), and has
been adopted by most of the recent work. Unlike their earlier
counterparts, these methods do provide a coherent global statistical
image model/prior.

A particular subclass of patch-based statistical image models uses
Gaussian mixtures (GM) to model the patches, in what can be seen
as a second type application of the divide and conquer principle, now
in the space of patch configurations. Different components of the GM
specialize in modeling different types of typical patch configurations.
Although many other statistical image models exist, using a GM as
a patch-prior has several relevant advantages: (i) the corresponding
minimum mean squared error (MMSE) estimate can be obtained in
closed form; (ii) the GM parameters can be estimated from a dataset
of clean or noisy patches, using the expectation-maximization (EM)
algorithm; (iii) theoretically, the class of Gaussian mixture densities
can approximate arbitrarily well any probability density (under mild
conditions).

In this keynote presentation, I will overview the class of GM-
based patch-based approaches to image restoration and reconstruc-
tion. After reviewing the first members of this family of methods,
which addressed only denoising under Gaussian noise, I will describe
more recent advances, namely: denoising under non-Gaussian noise;
use of class-adapted GM priors, i.e., tailored to specific image
classes (e.g., faces, fingerprints); addressing of problems other than
denoising (namely, deblurring, super-resolution, compressive image
reconstruction), by plugging GM-based denoisers in the loop of an
iterative algorithm (in what has recently been called the plug-and-play
approach); joint restoration/segmentation of images.
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Abstract—We consider one-dimensional blind deconvo-
lution in the context of sporadic communication of short
messages. Blind deconvolution is known to be ill–posed
in general and the required univariate case highly suffers
from non–trivial ambiguities. Classical blind equalization
methods therefore often fail in such applications. Hence, we
investigate signal recovery again in the framework of poly-
nomial factorization and discuss algorithmic approaches
for the original and the lifted problems. In the Wiener-
Hopf setting recovery up to trivial ambiguities is possible
using efficient iterative algorithms.

Recent progress in low–rank matrix recovery have put
blind deconvolution as a prototypical bilinear inverse
problem back into focus. In the noiseless setting the task
is to infer from observations:

yk = (h ∗ x)k =
∑

l

hlxk−l

the unknown vectors h and x. The multivariate case
has been intensively investigated, for example, in im-
age processing. In control theory and communication
engineering instead the one-dimensional case is relevant
which highly suffers from combinatorial non–trivial am-
biguities. The unknown vector h ∈ CK is called channel
(impulse response) and x ∈ CL is the transmit signal to
recover. With statistical assumptions on x the receiver
can estimate from y ∈ CL+K−1 an inverse operation
(equalization) in the regime L� K which is known as
blind equalization. However, sporadic and short message
communication means K ≈ L.

New results are obtained in [1] for randomized cyclic
convolutions y = w~x ∈ RL where w = Bh ∈ RL for
fixed B and x = Cm ∈ RL lies in a random (given by
C) subspace of dimension N . It has been shown that for
L = O(N+K) the (convex) nuclear norm minimization:

min ‖X‖∗ s.t. A(X) = y (1)

recovers hmT ∈ RK×N with high probability under
incoherence assumptions on B. Here, the nuclear norm
‖X‖∗ of a matrix X is the absolute sum of its singular
values and A is the (random) lifted map such that
A(hmT ) = Bh~Cm.

Although (1) renders blind deconvolution tractable
in theoretical terms this is (i) challenging complex for

communication applications since lifting considerably
increases problem size, (ii) it requires common random-
ness which is often not feasible, (iii) recovery guarantees
are probabilistic and can not be strict and (iv) cyclic
extensions for x causing additional overhead of O(K).
The computational aspect of the unlifted problem has
been tackled recently in [2] with a clever initialization
overcoming with high probability the nonconvex nature
such that gradient based algorithms will not stuck in local
minima.

We will address in this context blind (non–cyclic)
deconvolution again in the classical framework of poly-
nomial factorization. Let X and H be the z–transforms
of the vectors x and h. The z–transform Y : C→ C of
y = h ∗ x:

Y (z) = (H ·X)(z) =

L+K−2∑

k=0

ykz
−k

is a polynomial in the variable z−1 ∈ C (same for H
and X). Hence, given the observation y and further
constraints on h and x, the recovery problem is equiv-
alent to find a suitable factorization Y (z) = H(z)X(z)
such that H and X belong to particularly constrained
classes. Obviously, without sufficiently constraining the
unknowns unique factorization is not possible. The non-
trivial ambiguities can be characterized in the polynomial
description and classifying locations of the zeros could
yield uniqueness. Following this line, we also review
for the desired application the important minimum-phase
assumption where the unique factorization is known
as Wiener-Hopf factorization. For this setting a low-
complexity algorithm for blind deconvolution based on
[3] will be investigated which exactly (up trivial am-
biguities) recovers x and h. The algorithm allows for
large-scale problems and will be compared to existing
methods. REFERENCES
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Abstract—Regularized least-squares (RLS) estimator is one of the most
commonly used approaches for solving linear inverse problems. In the
context of statistical signal reconstruction, RLS is typically interpreted
as a maximum posteriori probability (MAP) estimator. However, recent
works have showed that minimum mean squared error (MMSE) estima-
tor can also be expressed as the solution of RLS. In this work, we present
a scheme for training the popular fast iterative shrinkage/thresholding
algorithm (FISTA) for computing MMSE estimator. Specifically, we show
that by representing FISTA as a deep neural network (DNN), the error
backpropagation algorithm can be used to learn thresholding functions
that minimize the MSE for a given statistical distribution of data.

I. TRAINING FISTA FOR MMSE ESTIMATION

We consider a linear inverse problem y = Hx + e, where the
goal is to recover the unknown signal x ∈ RN from the noisy mea-
surements y ∈ RM . The matrix H ∈ RM×N is known and models
the response of the acquisition device, while the vector e ∈ RM
represents unknown errors in the measurements. Inverse problems are
often ill-posed, which means that measurements y cannot explain the
signal x uniquely. One standard approach for solving such problems
is the regularized least-squares (RLS) estimator

x̂ = arg min
x∈RN

{
1

2
‖y −Hx‖2`2 +R(x)

}
, (1)

where R is a regularizer that imposes prior structure in order to
promote more meaningful solutions. For example, the choice of
R(·) = ‖ · ‖`1 leads to the famous Lasso estimator.

In the context of statistical signals x ∼ px and e ∼ N (0, σ2I),
it is possible to interpret RLS as a maximum a posteriori probabil-
ity (MAP) estimator by setting RMAP(x) = −σ2 log(px(x)). Such
interpretation establishes a popular connection between Lasso and
the Laplace statistical prior on the signal x. There is, however, an
alternative interpretation by Gribonval and Machart [1], establishing
a connection between RLS and a minimum mean square estimator
(MMSE) that can be defined as x̂MMSE = E[x|y]. While, MMSE
estimator is optimal in terms of quadratic error, its direct implementa-
tion involves tedious integral computations that cannot be practically
performed. Gribonval and Machart [1] have proved that for a non-
degenerate priors px, noise levels σ2, and full-rank matrices H, there
exists a regularizer RMMSE = RH,px,σ2 such that the MMSE estima-
tor is a minimizer of RLS with R = RMMSE. This result highlights
the fact that while one Bayesian interpretation of RLS is the MAP
estimator x̂MAP with prior px(x) ∝ exp(−RMAP(x)), there is another
admissible Bayesian interpretation as the MMSE estimator x̂MMSE,
where in general RMMSE(x) 6= −σ2 log(px(x)). Another important
consequence of this result is that by identifying the regularizerRMMSE,
one can reformulate MMSE estimation as RLS and rely on numerical
optimization for computing x̂MMSE in a potentially tractable fashion.

A common approaches for solving (1) is the fast iterative shrink-
age/thresholding algorithm (FISTA) [2] that can be expressed as

zt ← µtSxt−1 + (1− µt)Sxt−2 + b (2a)

xt ← η(zt). (2b)
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Fig. 1. Average NMSE of Lasso and trained FISTA plotted for different
noise levels at the measurement rate M/N = 0.6 when recovering Bernoulli-
Gaussian signals x of sparsity ρ = 0.2 from measurements with i.i.d. H.

where γ = 1/λmax(H
TH) is the step-size, {µt}t are the relaxation

parameters, S , I−γHTH, b , γHTy, and η(·) is a nonlinearity
that reduces to a scalar function for a separable R.

Iterations of FISTA can be represented as a feedforward neural
network whose adaptable parameters correspond to the nonlinear-
ity η(·) [3]. We adopt the following parametric representation for
the nonlinearity η(z) ,

∑K
k=−K ckφ (z/∆− k), where c ,

{ck}k∈[−K,...,K] are the coefficients of the representation and φ are
basis functions. Then, η(·) can be learned by solving

ĉ = arg min
c∈C

{
1

L

L∑

`=1

E`(c)

}
, (3)

where C ⊆ R2K+1 represents prior constraints on the
coefficients, and E is the empirical MSE defined as
E`(c) , 1

2
‖x` − xT (c,y`)‖2`2 , where xT is the solution of

FISTA at iteration T . Given a large number of i.i.d. realizations of
the signals {x`,y`}, the empirical MSE is expected to approach the
true MSE of FISTA for the given statistical distribution of data.

Let Φt be the matrix whose entries Φtmk = φ(ztm/∆ − k) at
row m and column k. The gradient ∇E`(c) is given by ∇E`(c) =
g1 + [Φ1]Tr11, where g1 and r1 are computed using the following
error backpropagation algorithm for t = T, T − 1, . . . , 2

gt−1 ← gt + Φtεt (4a)

vt−1 ← Sdiag(η′(zt))εt (4b)

εt−1 ← µtv
t−1 + (1− µt+1)vt, (4c)

where εT = xT − x, vT = 0, µT+1 = 0, and gT = 0. Given the
gradient, we can optimize over the coefficients c in an online fashion
using the projected gradient algorithm.
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Abstract—We study identifiability for bilinear inverse problems under
sparsity and subspace constraints. We show that, up to a global scaling
ambiguity, almost all such maps are injective on the set of pairs of sparse
vectors if the number of measurements m exceeds 2(s1 + s2)−2, where
s1 and s2 denote the sparsity of the two input vectors, and injective on
the set of pairs of vectors lying in known subspaces of dimensions n1

and n2 if m ≥ 2(n1+n2)−4. We also prove that both these bounds are
tight in the sense that one cannot have injectivity for a smaller number
of measurements. Our proof technique draws from algebraic geometry.
As an application we derive optimal identifiability conditions for the
deconvolution problem, thus improving on recent work of Li et al. [1].

I. INTRODUCTION

Bilinear inverse problems are ubiquitous in signal processing and
communications and have been studied extensively over several
decades in both the engineering and the mathematics literature. In
such problems, one observes a (potentially noisy) bilinear map on
two input signals, and the goal is to recover the inputs.

More precisely, the aim is to reconstruct two vectors u ∈ Cn1 \
{0}, v ∈ Cn2 \ {0} from the measurement outcome B̃(u, v), where
B̃ : Cn1 ×Cn2 → Cm is a bilinear map. At best, this is possible up
to a global multiplicative factor.

A natural first step in analyzing such problems is the quest for
conditions of identifiability, that is, to ask when such problems with
no added noise have a unique solution up to this ambiguity.

It is not difficult to describe bilinear maps (including certain
real life scenarios), where strong identifiability fails despite very
restrictive signal classes. These cases can, however, be considered
as exceptional. As we will show, generic bilinear maps will be
identifiable for m very close to the number of unknowns. The bounds
we derive are tight as no bilinear inverse problem will be identifiable
m lower than our bound.

II. TIGHT BOUNDS FOR THE INJECTIVITY PROBLEM

Our analysis uses the fact that every bilinear map can be ”lifted” to
a linear map on the outer product, that is, for B̃ bilinear there exists
a linear map B such that B̃(u, v) = B(uvt). Thus to show that a
bilinear map is injective on pairs of sparse vectors (for the case of
no sparsity constraint, set the sparsity to be the space dimension), it
suffices to show injectivity of B on the set

M1
s1,s2(n1, n2) := {uvt : u ∈ Cn1

s1 , v ∈ Cn2
s2 },

where Cns := {x ∈ Cn : x is s-sparse}. We hence seek stably
(s1, s2)-injective maps as introduced in the following definition.

Definition 1 (Stably (s1, s2)-injective): A linear map
B : Cn1×n2 → Cm is called stably (s1, s2)-injective iff there
exists a constant C > 0 such that ‖B(X)‖ ≥ C‖X‖HS holds for
all X ∈ {λ(X − Y )|X,Y ∈M1

s1,s2(n1, n2), λ > 0}.
The first result gives a general lower bound on the number of

measurement outcomes of a stably (s1, s2)-injective linear map.

Theorem 1 (Lower bound [2]): If the linear map B : Cn1×n2 →
Cm is stably (s1, s2)-injective, then

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

The following theorem shows that the lower bound given by Theorem
1 is indeed tight.

Theorem 2 (Upper bound [2]): Almost all1 linear maps B :
Cn1×n2 → Cm are stably (s1, s2)-injective if

m ≥
{

2(n1 + n2)− 4 if s1 = n1, s2 = n2,
2(s1 + s2)− 2 else.

III. BLIND DECONVOLUTION

A very important class of bilinear inverse problems are blind
deconvolution problems, where one observes the convolution of two
signals. This model has applications for example in image deblurring,
where the inputs represent the image and a blur kernel, or in
communication, where the two inputs represent signal and channel.
In this talk, we will consider the following variant.

The circular convolution of vectors v, w ∈ Cm is denoted
by v ~ w ∈ Cm, i.e., for all i ∈ {0, . . . ,m − 1} one has
(v ~ w)i :=

∑m−1
j=0 vjw(i−j) modm, which is clearly bilinear. By

design, the number of measurements agrees with the space dimension,
so one cannot hope for injectivity on the set of all inputs, but one
needs to consider subclasses imposing additional structure. Here we
consider the class of signals that are sparse in given bases or frames.
Here the term “almost all” refers to the Lebesgue measure on Cm×k.

Theorem 3 (Deconvolution with sparsity constraint [2]): Let
s1, s2 ∈ N+ be such that 2(s1 + s2) − 2 ≤ m and let k, l ∈ N
be such that s1 < k ≤ m, s2 < l ≤ m. Then, for almost all
(D,E) ∈ Cm×k × Cm×l with D,E both a frame, i.e., of full rank,
the linear map C representing the circular convolution map, that is,
C(uvt) = (Dv)~ (Ew) is stably (s1, s2)-injective.
Corresponding results are also derived for the case that the signal
is known to lie in a generic subspace. For both the sparse case and
the subspace case, slightly suboptimal identifiability conditions had
been derived prior to our work in [3], [1]. In contrast, it follows from
Theorem 1 that the bounds given in Theorem 3 as well as the ones
for the subspace case are optimal.
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Convex signal reconstruction with positivity constraints
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Abstract—Convex signal reconstruction is the art of reconstructing
structured signals, e.g. vectors, or matrices, from an under-determined
set of linear measurements via convex optimization techniques. Important
examples include compressed sensing and low rank matrix reconstruction.
Reconstruction is typically performed via a constrained norm mini-
mization, where the norm serves as a surrogate for structure and the
constraints take into account the measurement data.

Additional structural constraints, such as positivity, can have profound
impacts on the algorithmic reconstruction. These insights date back to
the very early days of compressed sensing. Here, we formulate novel
implications of positivity constraints that are geared towards noise
robustness and take into account more recent progress in the field of
convex signal reconstruction.

I. SPARSE RECONSTRUCTION OF NON-NEGATIVE VECTORS

Compressed sensing aims at reconstructing s-sparse vectors
x ∈ Rn from m � n noisy, linear measurements. Such a
measurement process may succinctly be written as

y = Ax+ e, (1)

where A ∈ Rm×n models the measurement process and e ∈ Rm
denotes additive noise. Typically, the actual reconstruction is then
performed by solving a constrained `1-norm minimization:

z] = argmin ‖z‖`1 subject to ‖Az − y‖`2 ≤ η. (2)

Here, the constant η denotes an upper bound on the noise strength
‖e‖`2 present in the measurement process.

To this date, several sufficient criteria on A have been established
that assure that (2) indeed converges to the right solution, see e.g.
[1] for an overview. Among these, the null space property (NSP)
has the added benefit of being both necessary and sufficient. Loosely
speaking, a matrix A ∈ Rm×n obeys a null space property of order
s ≤ n, if its kernel (nullspace) does not contain any s-sparse vectors.
Robust versions of this property assure that (2) stably reconstructs
any s-sparse x ∈ Rn from noisy measurements of the form (1):

‖z] − x‖`2 ≤
D√
m
η. (3)

This implies that the reconstruction error scales linearly in η—the
upper bound on the noise strength ‖e‖`2 .

The study of reconstructing sparse vectors that are in addition
entry-wise nonnegative (x ≥ 0) has a comparatively long history [2].
Here we adopt one geometric condition by Bruckstein et al. [3] and
combine it with more recent techniques from compressed sensing:

Theorem 1 (Main result in [4]). Suppose that A ∈ Rm×n obeys
a robust version of the NSP of order s and there exists a combi-
nation of measurement vectors w =

∑m
k=1 tkak that is entry-wise

positive. Then, every nonnegative, s-sparse vector x ∈ Rn may be
reconstructed from (1) via solving

z] = argmin
z≥0

‖Az − y‖`2 . (4)

This reconstruction is stable, in the sense that z] is guaranteed to
obey

‖z] − x‖`2 ≤
D√
m
‖e‖`2 . (5)

Compared to conventional compressed sensing results, this state-
ment has two benefits: (i) the reconstruction error (5) is directly pro-
portional to ‖e‖`2—the actual noise corruption in the measurements;
(ii) the algorithm (4) is considerably simpler than (2), or similar
reconstructions protocols that require a `1-regularization of some sort.

A concrete example for measurement matrices A that meets the
requirements of Theorem 1 are 0/1-Bernoulli matrices with m =
Cs log(n) rows [4].

II. LOW RANK MATRIX RECONSTRUCTION OF POSITIVE

SEMIDEFINITE MATRICES

The task of reconstructing a rank-r matrix X from noisy, linear
measurements of the form y = A(X) + e ∈ Rm may be viewed
as a non-commutative analogue of compressed sensing. Typically,
reconstruction is performed via solving a constrained norm mini-
mization similar to (2) over the set of all matrices. However, the
`1-norm is replaced by the nuclear norm which serves as a convex
surrogate for rank. Positive-semidefiniteness (X ≥ 0) is the natural
non-commutative analogue of non-negativity. One of the main results
in [5] corresponds to a matrix version of Theorem 1:

Theorem 2 (Theorem 8.3 in [5]). Suppose that a measurement
process A : Hd → Rm obeys a matrix version of the NSP of order
r and that there exists a linear combination W =

∑m
k=1 tkWk > 0

that is positive definite. Then, any positive semidefinite rank-r matrix
may be reconstructed from the acquired measurement data via solving

Z] = argmin
Z≥0

‖A(Z)− y‖`2 .

This reconstruction is stable towards additive noise in a way that is
completely analogous to (3).

III. APPLICATIONS

Positivity constraints are implicitly present in many applications.
Entry-wise non-negativity of vectors occurs, for instance naturally
in imaging problems and optical communication. Likewise, positive
semidefinite matrices arise in kernel-based learning methods, convex
relaxations of the phase retrieval problem and quantum mechanics.
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Abstract—Magnetic resonance imaging (MRI) is one of the most
successful application fields of compressed sensing (CS). Despite recent
advances, there is still a large discrepancy between theories and most
actual implementations. In [1], [2], we have proposed a new generic
principle for designing 2D k-space sampling trajectories that are fast
enough, compatible with hardware and imaging constraints and that
follow a prescribed sampling density. In this communication, we illustrate
the performance of this approach on a retrospective CS scenario. During
the workshop, 20-fold acceleration results in prospective CS will be
illustrated on ex-vivo high resolution T∗

2 imaging at 7 Tesla.

I. INTRODUCTION

MRI data are collected in the k-space (spatial Fourier domain)
along regular trajectories which are subject to kinematic constraints.
Indeed, the gradient waveforms which are responsible for this dis-
placement in k-space are obtained by energizing gradient coils with
electric currents, whose amplitude and slew rate are upper bounded.
Since high resolution MR imaging requires visiting larger k-space
domains (i.e., larger kmax), collecting such data is time consuming.

On the other hand, MR image resolution improvement in standard
scanning times (e.g., 200 µm in-plane in 15 min) would allow
neuroscientists and doctors to push the limits of their current knowl-
edge and to significantly improve both their diagnosis and patients’
follow-up. One critical path to achieve this goal relies on the CS
theory [3], [4], which has revolutionized how data can be collected
in a compressed manner while ensuring conditions for optimal image
recovery. This breakthrough has been accomplished by combining
three key ingredients: (i) pseudo-random acquisitions, (ii) image
representation using sparse decompositions (e.g., wavelets) and (iii)
nonlinear image reconstruction.

Although heuristic application of CS in MRI has provided promis-
ing results [5], CS theory cannot be directly cast to the MRI
setting. The reasons are: 1) the acquisition (Fourier) and represen-
tation (wavelets) bases are coherent and 2) 2D sampling schemes
obtained using CS theorems are composed of isolated measurements
and cannot be efficiently implemented by magnetic field gradients.
In the recent literature [6], [7], variable density sampling (VDS)
theory has addressed the first impediment. Moreover, in the seminal
paper [5], 2D pointwise sampling was performed along parallel lines
in the orthogonal readout direction to the the slices of interest,
thus implementing a 2D VDS within each slice. However, in a 3D
perspective, this 2D-VDS is likely suboptimal since high frequencies
along the readout direction are sampled too densely.

To go beyond this approach, new 2D sampling trajectories that
fulfill acquisition constraints while traversing the k-space as fast
as possible according to a prescribed variable density have been
proposed in [1], [2]. In brief, the proposed framework consists of
projecting a probability distribution (i.e. π) onto a set of mea-
sures that are brought by admissible curves with respect to the
gradient constraints. The proposed algorithm also allows to handle

arbitrary affine constraints (e.g. echo time specification) and auto-
matically generates efficient sampling patterns. So far, it has been
implemented in 2D although its 3D extension is currently under
study. On retrospectively undersampled (∼ 5 % of full k-space)
simulated data (Fig. 1), we illustrate its impact on the signal-to-
noise ratio (SNR) of reconstructed MR images that were computed
using a non-Cartesian implementation of the FISTA algorithm [8].
The reconstruction results using this strategy outperform existing
acquisition trajectories (spiral, radial) by about 3 dB. More recently,
we adapted a GRE sequence to acquire a T∗

2 weighted image of
an ex-vivo baboon brain at 7 Tesla (Siemens Magnetom) with an
adapted version of these multi-shot trajectories (sense of k-space
traversal, starting point selection, ...). Our preliminary results proved
the practical feasibility of these sampling schemes and the 20-fold
acceleration of acquisitions with shots lasting less than 40 ms.

Fig. 1. Simulation results for n = 2048 × 2048, Gmax = 40 mT.m−1,
Smax = 150 mT.m−1.ms−1. The trajectory (right side) is made of 4
segments of 25,000 points each distributed according to π = 1/(‖k‖+1)2.
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I. EXTENDED ABSTRACT

Multichannel blind deconvolution resolves unknown
input signal from multiple channel outputs with unknown
impulse responses. It is often easier to estimate only
the unknown channel impulse responses in applications
in wireless communications and underwater acoustics,
where a compact deterministic model with few param-
eters is not available for the input signal. In 1990s,
various reconstruction methods based on statistics of the
input signal and/or the commutativity of the convolution
operation have been proposed with algebraic perfor-
mance guarantees. However, the provided guarantees
are restricted to the case where the observations are
noise-free or the input has infinite length. Furthermore,
the empirical performance of these classical methods
deteriorates dramatically with a short input signal, which
restricts its utility in estimating time-varying channels.

Recently, motivated by a channel estimation problem
in underwater acoustics, the authors with Ning Tian
introduced a bilinear system model to multichannel
deconvolution and provided a fast algorithm with non-
asymptotic performance guarantees in the presence of
noise [1]. In this work, we consider a new channel
model with sparsity priors and propose corresponding
solutions that exploit the given channel model. While
the previous bilinear model with its separability structure
enabled natural alternating minimization approach, the
same strategy is not applicable to our new channel
model. Instead, we propose an iterative algorithm for
a nonconvex optimization formulation of multichannel
blind deconvolution under the sparsity channel model.
We show performance guarantees for the proposed algo-
rithm in terms of fast convergence and stable recovery of
the channel model parameters. Furthermore, numerical
results with generic data and with synthesized data in a
realistic setup will be presented to support our theoretic
findings.
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Abstract—From a Bayesian point of view, variational models derived
from the original model of Rudin, Osher and Fatemi can be interpreted
as a maximum a posteriori estimate associated with a total variation
Gibbs prior. While the posterior mean is known to be a better estimate
in general, its practical computation with Monte-Carlo Markov chains
is computationally very expensive. We here explore a recent alternative,
based on the iteration of conditional expectations. We discuss several
possibilities to extend this model from simple denoising to more general
inverse problems, while maintaining the fixed point structure and thus
the linear convergence of the algorithms.

Let v : Ω → R be a discrete gray-level image, defined on a
rectangular domain Ω ⊂ Z2. According to the ROF (Rudin, Osher,
Fatemi) model [1], a denoised version u : Ω → R of v can be
estimated by minimizing the energy

E(u) = ‖u− v‖2 + λTV (u),

where TV (u) is the discrete total variation of u and λ > 0
is a parameter that controls the level of regularization. Various
discretization schemes can be used to define TV (u), but we shall
here focus on the so-called anisotropic total variation

TV (u) =
1

2

∑

|x−y|=1

|u(y)− u(x)|.

Assuming that u follows the (improper) apriori distribution

p(u) ∝ e−βTV (u)

(for an appropriate choice of β) and that v − u is a white Gaussian
noise with variance σ2, the minimizer ûROF = arg minuE(u) can be
interpreted as the maximum density point of the posterior distribution

π(u) = p(u|v) ∝ exp

(
−‖u− v‖

2 + λTV (u)

2σ2

)
.

As discussed in [2], choosing such a maximum a posteriori estimate
is questionable, and the posterior mean estimate

ûLSE = Eπ(u) =

∫

RΩ

π(u)u du,

which achieves the least square error (in average), is often to be
preferred. Such a high-dimensional (typically, 106 for a 1000×1000
image) integral can be estimated using a Monte-Carlo Markov Chain
algorithm, but it is computationally quite intensive.

It is interesting to remark that for any x ∈ Ω, ûLSE(x) is the
expectation of the marginal distribution

π(u(x)) ∝
∫

Rxc
π(u) du(xc),

where u(xc) is the restriction of u to xc = Ω \ {x}. This
marginal distribution is difficult to compute, and is it tempting to use
the conditional marginal distribution π(u(x)|u(xc)) instead, whose
expectation only involves the computation of a one-dimensional

integral. This leads to the Iterated Conditional Expectation (ICE)
estimate, obtained as the limit of the fixed point recurrence

un+1(x) = Eπ
(
u(x)

∣∣u(xc) = un(xc)
)

= fv(x)(u
n), (1)

where the integral fv(x)(un) can be explicitly computed using the
error function erf. In [3], we showed that this iterative scheme linearly
converges to a solution ûICE, and experimentally observed that the
images delivered by ûICE and ûLSE were visually very close.

How to extend the ICE model to more general inverse problems?
If we now consider the energy

E(u) = ‖Au− v‖2 + λTV (u)

(for some known linear operator A) and the associated posterior
distribution π(u) ∝ exp(−E(u)/(2σ2)), one can show that the
natural ICE iteration can be rewritten under the form




wn(x) = un(x)− γ(x)A∗(Aun − v)(x)

un+1(x) = fwn(x)(u
n),

where γ(x) = ‖Aδx‖−2 (δx being the discrete Dirac at pixel x),
and f is the function appearing in the iteration of ICE denoising
(1), but here considered for the parameters λ(x) = γ(x)λ and
σ2(x) = γ(x)σ2. One can prove the convergence of this iterative
scheme, but with important restrictions on A that unfortunately
discard many interesting cases (in particular, medium and high blur
operators). To overcome this limitation, we study three variants of
the ICE iteration that considerably extend the convergence cases.
The associated algorithms exhibit a linear convergence rate (as in the
denoising case), and we illustrate them with classical imaging inverse
problems like deblurring, image magnification [4] and spectrum
extrapolation. Although theses variants do not theoretically define the
same solution, differences are visually barely noticeable in practice.

REFERENCES

[1] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D, vol. 60, no. 1, pp. 259–268, 1992.

[2] C. Louchet and L. Moisan, “Posterior expectation of the total variation
model: Properties and experiments,” SIAM J. Imaging Sciences, vol. 6,
pp. 2640–2684, 2013.

[3] ——, “Total variation denoising using iterated conditional expectation,”
Proc. Eur. Signal Process. Conf., pp. 1592–1596, 2014.

[4] F. Guichard and F. Malgouyres, “Total variation based interpolation,”
Proceedings of the European signal processing conference, vol. 3, pp.
1741–1744, 1998.

71



A differential-geometric derivation of MAP estimation
Marcelo Pereyra

School of Mathematics, University of Bristol, U.K.
School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, U.K.

Abstract—Bayesian estimators arise from Bayesian decision theory as
optimal summaries of the posterior ppx|yq w.r.t an expected loss. In
this paper we revisit the question of the choice of this loss function in
the context of convex problems. We show that under mild regularity
conditions, this loss is intimately related to ppx|yq by the differential
geometry of the parameter space. Precisely, ppx|yq induces a dually-flat
Riemannian geometry on the parameter space, and taking into account
this geometry naturally leads to a canonical loss function to perform
Bayesian estimation. We then show that this canonical loss is given by
the Bregman divergence associated with ´ log ppx|yq, and that the Bayes
estimator w.r.t. this loss is the maximum-a-posteriori estimator.

I. BAYESIAN POINT ESTIMATION FOR CONVEX PROBLEMS

We consider the Bayesian estimation of x P Rn from an observa-
tion y, related to x by the posterior ppx|yq “ ppy|xqppxq{ppyq. We
assume that

ppx|yq “ expt´φpxquş
Rn expt´φpsquds (1)

for some φ strongly convex and almost everywhere C3 over Rn.
Because drawing conclusions directly from ppx|yq is difficult

we deliver summaries, namely Bayesian estimators that summarise
ppx|yq optimally in the following decision-theoretic sense [1]:

x̂L “ argmin
uPRn

Ex|yrLpu, xqs fi
ż

Rn
Lpu, xqppx|yqdx.

where L : Rn ˆ Rn Ñ R is some relevant loss function to quantify
the difference between two points in Rn and that verifies:
‚ Lpu, xq ě 0, @u, x P Rn,
‚ Lpu, xq “ 0 iff u “ x,
‚ L strictly convex w.r.t. u (to guarantee estimator uniqueness).

The careful choice of L is extremely important, yet it has received
very little attention in the imaging literature. Moreover, most modern
imaging methods use the maximum-a-posteriori (MAP) estimator

x̂MAP “ argmax
xPRn

ppx|yq “ argmin
xPRn

φpxq,

that can be calculated efficiently by convex optimisation and generally
delivers very accurate results for convex models, but which is widely
thought to not be a Bayes estimator in a decision theory sense [1].

II. CANONICAL BAYESIAN ESTIMATION

A. Differential geometry of the parameter space

Suppose that (1) holds, and let φpxq “ ´ log ppx|yq. Because
φ is C3 and strongly convex it induces a Riemannian geometry on
Rn [2]. Precisely, from differential geometry, we have a dually-flat
Riemannian manifold pRn, g,Γ,Γ‹q with a metric

gi,jpxq “ BiBjφpxq, @x P Rn, @ i, j P t1, . . . , nu, (2)

primal and dual affine connections Γ and Γ‹ with coefficients

Γij, kpxq “ BiBjBkφpxq, Γ‹ij, kpxq “ BiBjBkφ‹pxq, (3)

and primal and dual coordinates x and η, related by the duality η “
∇φpxq and x “ ∇φ‹pηq where φ‹pηq “ maxxPRn xJη ´ φpxq.

Similarly to Euclidean spaces, this kind of manifold supports diver-
gence functions. In particular, dually-flat Riemannian manifolds are
equipped with a canonical divergence that generalises the Euclidean
quadratic distance dpu, xq “ }u´x}2 to these non-Euclidean spaces.

Definition II.1 (Canonical divergence [3]). For any two points u, x P
Rn, the canonical divergence on pRn, g,Γ,Γ‹q is given by

Dφpu, xq “
ż 1

0

t 9γtJgpγtq 9γtdt (4)

where γt “ u` tpx´ uq is the Γ-geodesic connecting uÑ x.

A dual canonical divergence D‹ψ w.r.t. η is defined by using ψ‹ and
the Γ‹-geodesic, and verifies the duality D‹φpηu, ηxq “ Dφpx, uq.
Also, in the Euclidean case Dφpu, xq “ }u´ x}2{2 as expected.

B. Differential-geometric derivation of MAP estimation

Theorem II.1 (Canonical Bayesian estimator). The canonical di-
vergence on the Riemannian manifold pRn, g,Γ,Γ‹q induced by
φpxq “ ´ log ppx|yq is the Bregman divergence

Dφpu, xq “ φpuq ´ φpxq ´∇φpxqpu´ xq.
In addition, the Bayesian estimator associated with Dφ is unique and
is given by the maximum-a-posteriori estimator, i.e.,

x̂Dφ fi argmin
uPRn

Ex|yrDφpu, xqs, (5)

“ argmin
xPRn

φpxq (6)

“ x̂MAP . (7)

Proof. The proof of Theorem II.1 is reported in [4].
Theorem II.1 provides several valuable new insights into MAP

estimation. It establishes that MAP estimation stems from Bayesian
decision theory, and that the definition x̂MAP “ argmaxxPRn ppx|yq
is mainly algorithmic. Hence, the predominant view of MAP estima-
tion as computationally efficient pseudo-estimation is fundamentally
incorrect. In fact, MAP estimation provides a general strategy to
derive a loss function and a Bayes estimator that are tailored
for ppx|yq; this is in sharp contrast with minimum mean square
error (MMSE) estimation, which provides a general strategy to
approximate quadratically any strongly convex loss function and its
estimator. Theorem II.1 also presents an interesting interpretation of
MMSE estimation as an approximation of MAP estimation where the
manifold pRn, g,Γ,Γ‹q is approximated by an Euclidean space.
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Abstract—Deconvolving an image might be a particularly challenging

problem when the object consists of very bright sources superimposed to

diffuse structures, a common situation in astronomical imaging. In this

work we propose a solution based on the representation of the image

as the sum of a pointwise component and a smooth one, with different

regularization for the two components, and we address the corresponding

minimization problem by means of the scaled gradient projection method.

Application to the deconvolution of high-dynamic range Poisson images

is considered.

I. THE DECONVOLUTION MODEL

We consider a standard Poisson image deconcolution problem and

we assume that the unknown target f is the sum of a point-wise part

fP and an extended and smooth one fE . We also assume that the

sources are localized inside small regions so that one can construct

a mask which is 1 on these regions and 0 elsewhere. The resulting

minimization problem becomes

min
(fE ,fP )∈Ω

Jβ(fE , fP ; g) ≡ J0(fE + fP ; g) + βJ1(fE) , (1)

where Ω is the set of non–negative couples (fE , fP ) with fP equal

to 0 outside a prefixed subregion P of the image and object domain

S and such that f = fE + fP satisfies the flux constraint

∑

n∈S

f(n) = c , c =
∑

m∈S

[g(m) − b(m)] ; (2)

g is the detected image; the background b is the known expected

value of the sky emission; the data-fidelity function J0(fE +fP ; g)
is the generalized Kullback–Leibler (KL) divergence [1] between

detected and computed images; the positive parameter β plays the

role of a regularization parameter; and the regularization function

J1(fE) is the Markov random field (MRF) operator defined as

J1(f) =
1

2

∑

n∈S

∑

n′∈N (n)

√
δ2 +

(
f(n) − f(n′)

ǫ(n′)

)2

,

where δ > 0, N (n) is a symmetric neighborhood made up of the

eight first neighbors of n and ǫ(n′) is equal to 1 for the horizontal

and vertical neighbors and equal to
√

2 for the diagonal ones.

II. MULTI–COMPONENT SCALED GRADIENT PROJECTION

METHOD

Problem (1) is addressed by means of the scaled gradient projection

(SGP) method [2], [3], born as a natural way to accelerate the

split gradient method (SGM) proposed by Lanteri [4] by introducing

variable step-lengths and projections. In its general form, SGP can be

applied to the minimization of any smooth objective function subject

to a feasible set on which the projection is fast to compute, as in

the case of box (possibly plus an equality) constraint. Feasibility

of the iterations and stationarity of the limit points of the sequence

are achieved by a projection on the constraints PΩ and a line-search

parameter λk automatically detected by means of a monotone Armijo

backtracking rule, thus resulting in the iteration

f (k+1) = f (k) + λk

(
PΩ(f (k) − αkDk∇Jβ(f (k); g)) − f (k)

)
,

Here the matrix Dk is defined according to the SGM strategy and the

step-length parameter αk is the one described e.g. in [2] and based

on the Barzilai–Borwein rules.

III. NUMERICAL RESULTS

We simulate a 256×256 Io-like object by generating a disc with the

same diameter of Io as observed by Keck [5] and a smoothly variable

brightness, including a sort of limb darkening; we superimpose to

the disc very bright sources and we convolve the result with a PSF

modeling the Keck PSF in M-band. It is obtained from the K-band

PSF of Keck provided with the Io images. Finally the result is

perturbed by Poisson noise. The positions of the bright sources (and

the related mask) are obtained by a rough reconstruction obtained by

running SGP on a standard KL + MRF minimization (here β = 10−4

and δ = 500). Then, SGP is used again to address problem (1) and

obtain an estimate of the smooth surface fE (here β = 10−2 and

δ = 10), which is used as background in a last SGP run on the

minimization of the non–regularized KL divergence in order to better

reconstruct the bright spots fP . The results are shown in Figure 1, in

which the blurred and noisy image, the surface reconstructed after the

second minimization and the complete reconstruction are provided.

Fig. 1. Blurred and noisy image (left), surface reconstruction (middle) and
final image (right).
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Abstract—We propose a new paradigm for solving linear systems. In
our paradigm, the system is reformulated into a stochastic problem, and
then solved with a randomized algorithm. Our reformulation can be
equivalently seen as a stochastic optimization problem, stochastically
preconditioned linear system, stochastic fixed point problem and as a
probabilistic intersection problem. We propose and analyze basic and
accelerated stochastic algorithms for solving the reformulated problem,
with linear convergence rates.

I. INTRODUCTION

In this work we are concerned with the problem of solving a
consistent linear system. In particular, consider the problem

solve Ax = b, (1)

where 0 6= A ∈ Rm×n. We shall assume throughout the paper that
the system is consistent, i.e., L def

= {x : Ax = b} 6= ∅.

II. STOCHASTIC REFORMULATIONS

We propose a fundamental and flexible way of reformulating
each consistent linear system into a stochastic problem. To the
best of our knowledge, this is the first systematic study of such
reformulations. Stochasticity is introduced in a controlled way into an
otherwise deterministic problem, as a decomposition tool which can
be leveraged to design efficient, granular and scalable randomized
algorithms. In particular, we consider a user-defined distribution D
describing an ensemble of random matrices S ∈ Rm×q . We make
use of one more parameter: a user-defined n×n symmetric positive
definite matrix B. Our reformulation of (1) as a stochastic problem
has several seemingly different, yet equivalent interpretations:

1) Stochastic optimization problem. Consider the problem

minimize f(x)
def
= ES∼D [fS(x)] , (2)

where fS(x) = 1
2
(Ax − b)>H(Ax − b), H =

S(S>AB−1A>S)†S>, and † denotes the Moore-Penrose
pseudoinverse. When solving the problem, we do not have
explicit access to f , its gradient or Hessian. Rather, we can
repeatedly sample S ∼ D and receive unbiased samples of these
quantities at points of interest.

2) Stochastically preconditioned linear system. We consider
what we call a stochastically preconditioned version of (1), namely

solve B−1A>ES∼D [H]Ax = B−1A>ES∼D [H] b. (3)

The preconditioner, P def
= B−1A>ES∼D [H], is not assumed to be

known explicitly. Instead, when solving the problem, we are able to
sample S ∼ D, obtaining an unbiased estimate of the preconditioner
(not necessarily explicitly), B−1A>H, for which we coin the name
stochastic preconditioner. This gives us access to a random sample
of system (3): B−1A>HAx = B−1A>Hb. This information can
be obtained by repeatedly querying the stochastic sampling S ∼ D
and utilized by an iterative algorithm.

3) Stochastic fixed point problem. Let ΠB
LS

(x) denote the
projection of x onto LS

def
= {x : S>Ax = S>b}, in the norm

‖x‖B def
=
√
x>Bx. Consider the stochastic fixed point problem

solve x = ES∼D
[
ΠB
LS

(x)
]
. (4)

That is, we seek to find a fixed point of the mapping x →
ES∼D

[
ΠB
LS

(x)
]
. When solving the problem, we do not have an

explicit access to the average projection map. Instead, we are able
to repeatedly sample S ∼ D, and use the stochastic projection map
x→ ΠB

LS
(x).

4) Probabilistic intersection problem. Consider the problem:

find x ∈ ∩S∼DLS
def
= {x : Prob(x ∈ LS) = 1}. (5)

As before, we typically do not have an explicit access to the
probabilistic intersection when designing an algorithm. Instead, we
can repeatedly sample S ∼ D, and utilize the knowledge of LS to
drive the iterative process. If D is a discrete distribution, probabilistic
intersection reduces to standard intersection.

Theorem 1. The four stochastic formulations are equivalent.

With all of the above reformulations we associate the same condi-
tion number. Letting W

def
= B−1/2A>E [H]AB−1/2, we define the

condition number as κ = κ(A,B,D)
def
= ‖W‖‖W†‖ = λmax/λ

+
min,

where ‖ · ‖ is the spectral norm, λmax is the largest eigenvalue of
W and λ+

min is the smallest nonzero eigenvalue of W. Let X be the
set of solutions of any of the reformulations. We now give necessary
and sufficient conditions for this set to be equal to L.

Theorem 2. L = X ⇔ Null
(
E
[
A>HA

])
= Null (A).

III. ALGORITHMS

We propose several algorithms for solving the reformulations. Our
basic method has the form

xk+1 = φω(xk,Sk)
def
= xk − ωB−1A>Hk(Axk − b), (6)

where Sk ∼ D is sampled afresh in each iteration. This method can
be interpreted as stochastic gradient descent and stochastic Newton
descent, with stepsize ω, applied to the stochastic optimization
problem; as a stochastic fixed point method, and as a stochastic
projection method. Our accelerated method can be written as

xk+1 = γφω(xk,Sk) + (1− γ)φω(xk−1,Sk−1), (7)

where the matrices {Sk} are independent samples from D, and γ ∈ R
is an acceleration parameter. Our theory suggests that γ should be
always between 1 and 2. In particular, for well conditioned problems
(small κ), one should choose γ ≈ 1, and for ill conditioned problems
(large κ), one should choose γ ≈ 2.

Theorem 3. For suitable parameters ω and γ, the basic (resp.
accelerated) method converges linearly in expectation, with rate
O(κ) (resp. O(

√
κ)).
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Abstract—We will present a new convex relaxation for the phase
retrieval problem based on linear (in the real case) or quadratic (in
the complex case) programming. The number of variables in the convex
relaxation is the same as the dimension of the signal, so we avoid the
increase in dimensionality inherent to lifting schemes. Our method has a
clear geometric interpretation: by relaxing each magnitude measurement
into a pair of inequality constraints, we know that the signal of interest
lies on the surface of the polytope defined by the intersection of these
constraints. We show that even a rough guess of where the signal lies
(a guess that can itself be formed from the measured data) is enough to
define a linear functional over this polytope whose maximum is at the
true signal. Our analysis uses classical results from statistical learning
theory, in particular the VC dimension and generalization bound.
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Abstract—Since their introduction in the early 90s, half-quadratic
regularization approaches have become a popular tool for modeling
a-priori information about images and, more generally, visual scenes.
For the most part, their popularity stems from efficient alternating
optimization schemes that arise directly from their model structure. This
talk will give a summary of our work on two other uses of half-quadratic
schemes. First, we will show how they can be used to derive efficient
sampling schemes for learning the prior and for performing posterior
inference. This enables concrete applications to denoising and deblurring,
and allows a Bayesian treatment of nuisance parameters such as the noise
strength. Second, we will demonstrate how half-quadratic optimization
can be turned into multi-stage discriminative architectures that allow for
loss-based training. The resulting shrinkage fields combine ideas from
random fields, shrinkage, and discriminative learning into an efficient
model architecture that scales well to megapixel images.

I. INTRODUCTION

Half-quadratic approaches to image restoration were introduced by
Geman and colleagues over 20 years ago [1], [2]. Their basic idea
is to augment the image prior p(x) with auxiliary variables z into a
joint distribution p(x, z) such that the image prior can be obtained
by maximizing or marginalizing over the auxiliary variables. Maxi-
mization over z, i.e. p(x) = maxz p(x, z), gives rise to the popular
envelope type, while marginalization, i.e. p(x) =

∫
p(x, z) dz, yields

the integral type. The name half-quadratic stems from the fact that
the augmentation is chosen such that the model energy E(x, z) with
p(x, z) ∝ exp(−E(x, z)) is quadratic in x (but not in z). The crucial
benefit is that this enables inference schemes that alternate between
updating x and updating z, which build the basis of a number of
widely used efficient image restoration schemes, e. g. [3], [4].

II. HALF-QUADRATIC SAMPLING

In the first half of this talk, we will turn to the less widely used inte-
gral type. We exploit that the half-quadratic formalism allows setting
up an auxiliary variable Gibbs sampler that alternates between sam-
pling from p(x|z) and p(z|x). Its benefit is threefold: Since p(x|z)
is Gaussian (following from the quadratic model energy), sampling
is rather efficient mainly involving solving linear equation systems.
Second, as the individual auxiliary variables zi are conditionally
independent given x, sampling p(z|x) is straightforward. Finally, this
sampling scheme mixes much more rapidly than traditional single-
site Gibbs samplers or Hamiltonian Monte Carlo.

We first explore sampling image priors based on pairwise and high-
order Markov random fields, which can be used to learn faithful
image models [5], [6] as well as evaluate how well the resulting
models reproduce key statistical properties of (photographic) images.
Next, we show how the auxiliary variable sampler can be used for
sampling the posterior in image denoising [5], [6] and deblurring [7]
applications, which allows computing a Bayesian mean squared error
estimate. Finally, the sampler can be extended to nuisance variables,
which allows for a Bayesian treatment of the noise strength or the
point spread function [7].

III. SHRINKAGE FIELDS

In the second half of the talk, we will turn to applications of half-
quadratic schemes for energy minimization that enable highly effi-
cient and effective discriminatively-trained image restoration models.
Their efficiency stems from using the so-called additive envelope
type, which when combined with suitable boundary conditions en-
ables diagonalizing the system matrix of the quadratic part of the
energy using the FFT. The effectiveness on the other hand stems from
unrolling the half-quadratic optimization into a fixed set of stages,
replacing the optimization over certain potential functions using a
more powerful shrinkage operation, and training individual shrinkage
functions and image filters for each stage in a discriminative end-to-
end fashion.

The resulting shrinkage fields [8] combine ideas from classical
shrinkage with iterative inference in random fields and discriminative
training. One benefit over “black-box” discriminative learning ap-
proaches is that a connection to the original generative image model is
retained, which for example allows adapting the approach to different
image formation parameters (e. g., point spread functions) at test time
without retraining. Moreover, the approach scales well to large image
sizes and yields highly competitive restoration quality.
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Abstract—The D-AMP methodology, recently proposed by Metzler,
Maleki, and Baraniuk, allows one to plug in sophisticated denoisers like
BM3D into the AMP algorithm to achieve state-of-the-art compressive
image recovery. But AMP diverges with small deviations from the i.i.d.-
Gaussian assumption on the measurement matrix. Recently, the VAMP
algorithm has been proposed to fix this problem. In this work, we show
that the benefits of VAMP extend to D-VAMP.

Consider the problem of recovering a (vectorized) image x0 ∈ RN

from compressive (i.e., M ≪ N ) noisy linear measurements

y = Φx0 + w ∈ RM , (1)

known as “compressive imaging.” The “sparse” approach to this
problem exploits sparsity in the coefficients v0 ! Ψx0 ∈ RN of
an orthonormal wavelet transform Ψ. The idea is to rewrite (1) as

y = Av0 + w for A ! ΦΨT, (2)

recover an estimate v̂ of v0 from y, and then construct the image
estimate as x̂ = ΨTv̂.

Although many algorithms have been proposed for sparse recovery
of v0, a notable one is the approximate message passing (AMP)
algorithm from [1]. It is computationally efficient (i.e., one multipli-
cation by A and AT per iteration and relatively few iterations) and
its performance, when M and N are large and Φ is zero-mean i.i.d.
Gaussian, is rigorously characterized by a scalar state evolution.

A variant called “denoising-based AMP” (D-AMP) was recently
proposed [2] for direct recovery of x0 from (1). It exploits the fact
that, at iteration t, AMP constructs a pseudo-measurement of the form
v0 + N (0, σ2

t I) with known σ2
t , which is amenable to any image

denoising algorithm. By plugging in a state-of-the-art image denoiser
like BM3D [3], D-AMP yields state-of-the-art compressive imaging.

AMP and D-AMP, however, have a serious weakness: they diverge
under small deviations from the zero-mean i.i.d. Gaussian assumption
on Φ, such as non-zero mean or mild ill-conditioning. A robust
alternative called “vector AMP” (VAMP) was recently proposed [4].
VAMP has similar complexity to AMP and a rigorous state evolution
that holds under right-rotationally invariant Φ—a much larger class
of matrices. Although VAMP needs to know the variance of the
measurement noise w, an auto-tuning method was proposed in [5].

In this work, we integrate the D-AMP methodology from [2] into
auto-tuned VAMP from [5], leading to “D-VAMP.” (For a matlab
implementation, see http://dsp.rice.edu/software/DAMP-toolbox.)

To test D-VAMP, we recovered the 128 × 128 lena, barbara, boat,
fingerprint, house, and peppers images using 10 realizations of Φ.
Table I shows that, for i.i.d. Gaussian Φ, the average PSNR and
runtime of D-VAMP is similar to D-AMP at medium sampling ratios.
The PSNRs for v-based indirect recovery, using Lasso (i.e., “ℓ1”)-
based AMP and VAMP, are significantly worse. At small sampling
ratios, D-VAMP behaves better than D-AMP, as shown in Fig. 1.

To test robustness to ill-conditioning in Φ, we constructed Φ =
JSPFD, with D a diagonal matrix of random ±1, F a (fast)
Hadamard matrix, P a random permutation matrix, and S ∈ RM×N
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Fig. 1. PSNR versus iteration at several sampling ratios M/N for i.i.d.
Gaussian A.

a diagonal matrix of singular values. The sampling rate was fixed
at M/N = 0.1, the noise variance chosen to achieve SNR=32 dB,
and the singular values were geometric, i.e., si/si−1 = ρ ∀i > 1,
with ρ chosen to yield a desired condition number. Table II shows
that (D-)AMP breaks when the condition number is ≥ 10, whereas
(D-)VAMP shows only mild degradation in PSNR (but not runtime).

TABLE I
AVERAGE PSNR AND RUNTIME FROM MEASUREMENTS WITH I.I.D.

GAUSSIAN MATRICES AND ZERO NOISE AFTER 30 ITERATIONS

sampling ratio 10% 20% 30% 40% 50%
PSNR time PSNR time PSNR time PSNR time PSNR time

ℓ1-AMP 17.7 0.5s 20.2 1.0s 22.4 1.6s 24.6 2.3s 27.0 3.1s
ℓ1-VAMP 17.6 0.5s 20.2 0.9s 22.4 1.4s 24.8 1.8s 27.2 2.3s

BM3D-AMP 25.2 10.1s 30.0 8.8s 32.5 8.6s 35.1 9.1s 37.4 9.8s
BM3D-VAMP 25.2 10.4s 30.0 8.5s 32.5 8.2s 35.2 8.5s 37.7 8.8s

TABLE II
AVERAGE PSNR AND RUNTIME FROM MEASUREMENTS WITH

DHT-BASED MATRICES AND SNR=32 DB AFTER 10 ITERATIONS

condition no. 1 10 102 103 104

PSNR time PSNR time PSNR time PSNR time PSNR time
ℓ1-AMP 17.3 0.02 <0 — <0 — <0 — <0 —
ℓ1-VAMP 17.4 0.04 17.4 0.04 15.6 0.03 14.7 0.03 14.4 0.03

BM3D-AMP 24.8 5.2s 8.0 — 7.2 — 7.1 — 7.2 —
BM3D-VAMP 24.8 5.4s 24.3 5.5s 22.6 5.3s 21.4 4.9s 20 4.5s
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Abstract—Current low-rank tensor literature lacks development in
large scale processing and generalization to graphs [1]. Motivated by the
fact that the first few eigenvectors of the knn-nearest neighbors graph
provide a smooth basis for the data, we propose a novel framework
“Multilinear Low-Rank Tensors on Graphs (MLRTG)”. The applications
of our scalable and approximate method include approximate and fast
methods for tensor compression, Robust PCA, completion and clustering.
We specifically focus on Graph Multilinear SVD (GMLSVD) in this work.

Multilinear Low-Rank Tensors on Graphs (MLRTG): A tensor
Y⇤ 2 Rn⇥n⇥n is said to be Multilinear Low-Rank on Graphs
(MLRTG) if it can be encoded in terms of the lowest k Laplacian
eigenvectors as:

vec(Y⇤) = (P1k ⌦ P2k ⌦ P3k) vec(X ⇤), (1)

where vec(·) denotes the vectorization, ⌦ denotes the kronecker
product, Pµk 2 Rn⇥k, 8µ are the lowest k eigenvectors of knn-
graphs constructed between the rows of the matricized versions Yµ

of Y⇤ and X ⇤ 2 Rk⇥k⇥k is the Graph Core Tensor (GCT). We call
the tuple (k, k, k), where k ⌧ n, as the Graph Multilinear Rank
of Y⇤ and refer to a tensor from the set of all possible MLRTG as
Y 2 MLT.

For any Y 2 MLT, the GCT X is the most useful entity. For
a clean matricized tensor Y1 it is straight-forward to determine the
matricized X as X1 = P>

1kY1P2,3k, where P2,3k = P1k ⌦ P2k 2
Rn2⇥k2

. For the case of noisy Y , one seeks a robust X which is
not possible without an appropriate regularization on X . Hence, we
propose to solve the following convex minimization problem:

min
X
kY1 � P1kX1P

>
2,3kk2F + �

X

µ

kXµk⇤g(⇤µk), (2)

where k · k⇤g(·) denotes the weighted nuclear norm and g(⇤µk) =
⇤a

µk, a � 1, denotes the kernelized Laplacian eigenvalues as the
weights for the nuclear norm minimization. Assuming the eigenvalues
are sorted in ascending order, this corresponds to a higher penaliza-
tion of higher singular values of Xµ which correspond to noise. Such
a nuclear norm minimization on the full tensor (without weights) has
appeared in earlier works [2]. However, note that in our case we
lift the computational burden by minimizing only the core tensor X .
Using Y1 = P1kX̂1P

>
2,3k in eq. (2), we get:

min
X
kX̂1 �X1k2F + �

X

µ

kXµk⇤g(⇤µk). (3)

Notice that the decomposition (1) is quite similar to the standard
Mulitlinear SVD (MLSVD) [3]. In standard MLSVD, one aims to
decompose a tensor Y 2 Rn⇥n⇥n into factors Uµ 2 Rn⇥r which
are linked by a core S 2 Rr⇥r⇥r . In our case the decomposition is
given in terms of the pre-computed Laplacian eigenvectors Pµk and
X is determined by GCTP eq. (3).

Algorithm for GMLSVD: For a tensor Y , one can compute
GMLSVD in the following steps: 1) Compute the graph core tensor
X via eq. (3), 2) Perform the MLSVD of vec(X ) = (A1k ⌦
A2k ⌦ A3k) vec(R), 3) Let the factors Vµ = PµkAµk and the
core tensor is R. Thus, the MLSVD of Y is given as vec(Y) =

Original	 compressed

Figure 1. Compression of hyperspectral images via GMLSVD. Left plots
show the grayscale image of the 1st spectral band of each dataset and the
right show the same image after compression. Compression rates of 125 and
110 times are attained with an SNR of 25dB and 15dB for the two datasets.

(P1kA1k ⌦P2kA2k ⌦P3kA3k) vec(X ). The Laplacian eigenvectors
Pµk can be computed with a cost O(nk2) via the Power Method.
Hence, GMLSVD scales with O(nk2 + k4) per iteration. This is
advantageous for applications such as tensor Robust PCA (O(n4) per
iteration) which constitute the work in progress. Theoretical results
for this method are in progress.

Hyperspectral Image Compression : We report results for the
compression of two hyperspectral image datasets collected from
Stanford database: 1) face dataset Y 2 R542⇥333⇥148, 250MB in
size and 2) the landscape Y 2 R702⇥1000⇥148, 650MB in size as
shown in the left plots of Fig. 1. The right plots in each row show
the 1st spectral band in grayscale for the compressed datasets. For
the face dataset, we used a core tensor X 2 R70⇥70⇥30 and achieved
a compression of 125 times, while maintaining an SNR of 25dB. For
the landscape dataset, we used a core tensor X 2 R150⇥150⇥30 to
achieve a compression of 110 times with an SNR of 15dB. Both
datastes required less than 1 minute for compression.
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Abstract—Recently non-smooth variational models were applied very
successfully for the restoration and segmentation of images. One of
the most popular models was proposed by Rudin, Osher and Fatemi
in 1992 which was meanwhile improved and generalized by many
authors. Nowadays we are confronted with ,,images” taking values in
a Riemannian manifold. We show how various variational models, in
particular those including second order differences can be generalized
to the manifold-valued setting. We suggest certain algorithms to find
the minimizer of the corresponding functions among them the cyclic
proximal point algorithm, the Douglas-Rachford algorithm and half-
quadratic minimization.

I. INTRODUCTION

In various applications in image processing and computer vision
the functions of interest take values in a Riemannian manifold.
Examples are diffusion tensor imaging (DT-MRI) or texture pro-
cessing with covariance matrices of Gaussian distributions where the
data lives in the Riemannian manifold of positive definite matrices.
Circular and spherical data appear in synthetic aperture radar (SAR),
in color image processing based on non-flat color models or whenever
directional information is handled. The motion group SE(3) and
the rotation group SO(3) play a role in tracking, robotics, (scene)
motion analysis and electron backscattered diffraction (EBSD). Due
to the natural appearance of such nonlinear data spaces, processing
manifold-valued data has gained a lot of interest in recent years.

We introduce a non-smooth variational model for the restoration
of manifold-valued images using first and second order differences.
The model can be seen as a second order generalization of the Rudin-
Osher-Fatemi (ROF) functional [1] for images taking their values in a
Riemannian manifold. For real-valued images, its discrete, anisotropic
penalized form is given by

D(u; f) + αTV(u) (1)

where the data fidelity term

D(u; f) := 1

2

∑

i,j

|fi,j − ui,j |2,

measures the similarity between the wanted image u and the given
data f := (fi,j) ∈ RN,M , and the total variation type regularizing
term

TV(u) := α
∑

i,j

(|ui,j − ui+1,j |+ |ui,j − ui,j+1|) ,

takes care that important features such as edges are preserved. The
regularization parameter α > 0 steers the relation between both
terms. Unfortunately, the model tends to produce staircasing: instead
of reconstructing smooth areas as such, the reconstruction consists
of constant plateaus with small jumps. An approach for avoiding this
effect incorporates second order differences. For an overview we refer
to [2].

Recently, primal-dual splitting algorithms were successfully ap-
plied in image processing mainly for two reasons: the functionals to
minimize allow for simple proximal mappings within the method,
and it turned out that the algorithms are highly parallelizable, see,
e.g., [3]. Therefore these algorithms are among the most popular
ones in variational image processing. However, it appears to be a
hard task to transfer them to the manifold-valued setting. In this
paper, we show how some approaches as the cyclic proximal point
algorithm, the Douglas-Rachford splitting algorithm and the half
quadratic minimization algorithm can be generalized to manifolds.
Various numerical examples give a powerful proof of the concept.

II. VARIATIONAL MODEL

Let M be a complete, connected n-dimensional Riemannian
manifold with geodesic distance dM:M ×M → R≥0. Given a
noisy image f ∈MN,M we are looking for a denoised image

D(u, f) := 1

2

∑

i,j

dM(fi,j , ui,j)
2 + αTV(u)

and

TV(u) :=
∑

i,j

(dM(ui,j , ui+1,j) + dM(ui,j , ui,j+1)) .

More precisely, we update the above model by introducing an-
other regularizing term which contains second order differences of
manifold-valued samples and provide numerical algorithms for find-
ing minimizers of these functions. The approach can be generalized
to images with missing pixels. Details can be found in our papers
[4], [5], [6], [7].
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Abstract—We consider the problem of blind deconvolution of multiple
signals from its superposition, also called blind demixing and deconvo-
lution. One is given a signal y =

∑r
i=1 wi ∗ xi ∈ RL which is the

superposition of r unknown source signals {xi}ri=1 and convolution
kernels {wi}ri=1. The goal is to reconstruct the vectors wi and xi,
which are elements of known, but random subspaces. The problem can
be lifted into a low rank matrix recovery problem and then solved by
a semi-definite program. We will present our theorem, which states that
up to log-factors, the number of required measurements scales with
the number of the degree of freedoms of our system. This significantly
improves results from [1].

I. INTRODUCTION

Suppose that we are given a signal

y =
r∑

i=1

wi ∗ xi ∈ RL.

Our goal is to reconstruct wi and xi. Without any further
assumptions, this problem is highly underdetermined. We will
assume that both wi and xi are elements of known subspaces. Thus,
we may write wi = Bihi and xi = Cimi, where Bi ∈ RL×Ki

and Ci ∈ RL×Ni . The matrices (Ci)
r
i=1 are chosen independently

at random. Each matrix has independent Gaussian entries, i.e.
(Ci)j,k ∈ N (0, 1). Bi will be the matrix, which extends hi by
zeros. This scenario is of importance in wireless communication,
see e.g. [2], [3] .

By F ∈ RL×L we will denote the non-normalized Fourier
transform, i.e. (F )kl = exp

(
2πikl
L

)
. We set ŷ = Fy. Furthermore,

if bi,l denotes the l-th row of FBi and ci,l denotes the l-th column
of (FCi)∗ one can compute that for the l-th entry of ŷ

ŷ (l) =
1√
L

r∑

i=1

b∗i,l (him
∗
i ) ci,l.

This motivates us to introduce linear maps Ai : RK×N → CL given
by

Ai (X) (l) =
1√
L
b∗i,lXci,l.

Note that this implies ŷ =
∑r
i=1Ai (him∗

i ).

A convex recovery approach was pioneered in [4] for r = 1. In
[1] the following convex program was proposed in order to recover
the vectors hi and mi for 1 ≤ i ≤ r:

minimize
r∑

i=1

‖Yi‖∗ subject to ŷ =
r∑

i=1

Ai (Yi) . (1)

Setting K = max
1≤i≤r

and N = max
1≤i≤r

Ni they could show the following

result: If the number of measurements scales essentially in the order
of r2

(
K + µ2

hN
)
, then with high probability the convex program is

successful. This means that X0 is the unique minimizer, where

X0 = (h1m
∗
1, · · · , him∗

i , · · · , hrm∗
r) .

The quantity µh ∈ [1,K] is a coherence parameter defined by

µ2
h = max

1≤i≤r, 1≤l≤L
|h∗
i bl|2
‖hi‖`2

.

II. OUR RESULT

In [1], the authors discuss that their recovery guarantee might be
too pessimistic. Indeed, their numerical experiments suggest that it
seems to be enough if the number of measurements scales linearly in
r. The following theorem puts this observation on solid theoretical
ground.

Theorem 1 (Jung, Krahmer, Stoeger, 2016). Let α ≥ 1. Assume that

L ≥ Cαr
(
K log2K +Nµ2

h

)
log2 L log (γ0r) , (2)

where γ0 =
√
N
(
log
(
NL
2

))
+ α logL and Cα is a constant only

depending on α. Then with probability 1 − O
(
L−α) the recovery

program ( 1) is successful, i.e. X0 is the unique minimizer of ( 1).

The main novelty in the proof is that the authors established that
with high probability

(1− δ)
r∑

i=1

‖Xi‖2F ≤ ‖
r∑

i=1

Ai (Xi) ‖2`2 ≤ (1 + δ)
r∑

i=1

‖Xi‖2F

for all X = (X1, · · · , Xr) ∈ T , where

T =
{
(u1m

∗
1 + h1v

∗
1 , · · · , urm∗

r + hrv
∗
r , ) :

u1 ∈ RK1 , · · · , ur ∈ RKr , v1 ∈ RN1 , · · · , vr ∈ RNr

}

This is achieved by using methods developed in [5]. The complete
proof has already been announced in [6] and will appear in [7].
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Abstract—We study a family of nonconvex optimization problems
which can be solved globally, from arbitrary initializations, using efficient
algorithms. The key property that these functions have is that (i) every
local minimum is global, and (ii) every saddle point has a direction of
strict negative curvature. We describe results showing that this property
obtains in problems of interest for signal and image processing, including
the complete dictionary recovery problem, and the generalized phase
retrieval problem.

Many problems in signal and image processing are most naturally
cast as nonconvex optimization problems. General nonconvex opti-
mization is NP-hard: in fact, even finding a local minimum is hard
– nevermind the global optimum. Nevertheless, in many practical
situations, simple heuristic algorithms find high quality solutions.
The ability of simple, local algorithms to find high-quality solutions
for practical problems remains largely mysterious. This talk will
recount recent efforts to close this gap, including results on complete
dictionary learning (DL) and generalized phase retrieval (GPR).
These results are described in more detail, e.g., in [1], [2], [3].

Perhaps the simplest example of a nonconvex optimization problem
which can be solved globally using efficient methods is the problem
of optimizing a quadratic form over the sphere

min
x∈Sn−1

x∗Mx, (1)

where M is a symmetric matrix. Stationary points of this problem
correspond to eigenvectors of M . Moreover, the problem exhibits two
properties which are critical to showing that it can be solved globally:
(i) every local optimizer is global – a vector x is a local maximizer
if and only if it is an eigenvector of M corresponding to the smallest
eigenvalue. Moreover, (ii) every other critical point has a direction of
strict negative curvature – i.e., an appropriate notion of the Hessian
over Sn−1 (the Riemannian Hessian) has a negative eigenvalue. The
first property implies that it is sufficient to find a local optimum; the
second implies that a wide range of simple algorithms efficiently find
local minimizers – including the (Riemannian) trust region method
[2] and noisy gradient descent [4]. Property (ii) has been referred to
in the literature as a strict saddle [4] or ridable saddle property [6].

Perhaps surprisingly, properties (i) and (ii) obtain in a number
of practical problems of interest for signal processing. We describe
two examples. The first is the sparse dictionary learning problem,
in which one seeks a concise representation for a data matrix
Y = [y1, . . . ,yp] ∈ Rn×p. That is to say, we seek a factorization
Y ≈ QX , in which Q is the dictionary, and the coefficients X
are as sparse as possible. The goal is to recover (Q,X) given Y .
Natural approaches to this problem are nonconvex; moreover, the
problem admits large symmetry group – if (Q,X) is a solution,
so is (QΓ,Γ∗X), for any signed permutation Γ. This symmetry
makes the problem not amenable, in any natural way, to convex
relaxation. To study the problem theoretically, a typical approach is
to posit a generative model: Y = Q0X0, and as whether algorithms
efficiently recover (Q0,X0) up to signed permutation. In particular,
we study the problem under the assumption that X0 is a sparse
random matrix: each entry is nonzero with some probability θ, and

the nonzero entries are independent N (0, 1) random variables. We
also restrict Q0 to be a square and invertible matrix. Under these
assumptions, the problem of learning Q0 and X0 can be reduced
to a sequence of n-dimensional optimization problems, in which the
goal is to recover a single column of Q0:

min
q∈Sn−1

p∑

i=1

hµ (q
∗yi) . (2)

Here, hµ is a smooth, sparsity encouraging function. It turns out
that when p ≥ poly(n), and θ < 1/3, with high probability this
problem has no spurious local minimizers. This implies that we can
efficiently recover Q0 and X0 in this situation. A noteworthy aspect
of this result is that the probability θ of an entry of X0 being nonzero
can be a constant; most previous results on simple, practical methods
required θ = O(1/

√
(n)).

A second example in which properties (i) and (ii) obtains is
the generalize phase retrieval problem, in which we attempt to
recover a complex vector x ∈ Cn from the moduli yi = |a∗ix|
of its projections onto a collection of vectors a1, . . . ,am ∈ Cn.
This property also exhibits a symmetry, which arises because the
measurements are invariant to a global phase shift x 7→ eiφx. We
study a natural optimization formulation,

min
z

1
2m

m∑

i=1

(
|a∗i z|2 − y2i

)2
. (3)

For this problem, properties (i) and (ii) obtain when the ai are iid
complex normal random vectors, and m ≥ Cn log3 n. A contrast
between this result and previous efforts on this problem is that
it implies that simple iterative methods obtain the correct solution
independent of initialization; previous results on nonconvex methods
for this problem required careful initialization.

For both problems, we describe an approach to analysis which
first examines the population (large sample) version of the objective
function, demonstrates that it is well-structured for optimization, and
then shows that with high probability the finite sample version is
similarly well-structured. For both problems, these results imply that
a variety of simple, efficient algorithms produce correct solutions.
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